Abstract

We present an optical interference model to create chiral microstructures (spirals) and its realization in photoresist using holographic lithography. The model is based on the interference of six equally-spaced circumpolar linear polarized side beams and a circular polarized central beam. The pitch and separation of the spirals can be varied by changing the angle between the side beams and the central beam. The realization of the model is carried out using the 325 nm line of a He-Cd laser and spirals of sub-micron size are fabricated in photoresist.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical activities of large-area SU8 microspirals fabricated by multibeam holographic lithography

Xia Wang, Wensheng Gao, Jenny Hung, and Wing Yim Tam
Appl. Opt. 53(11) 2425-2430 (2014)

Square spiral 3D photonic bandgap crystals at telecommunications frequencies

Martin O. Jensen and Michael J. Brett
Opt. Express 13(9) 3348-3354 (2005)

Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8

Henry E. Williams, Daniel J. Freppon, Stephen M. Kuebler, Raymond C. Rumpf, and Marco A. Melino
Opt. Express 19(23) 22910-22922 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Soukoulis, Photonic Band Gaps and Localization, (Plenum, New York, 1993).
  2. C. M. Soukoulis, Photonic band gap materials, (Kluwer, Dordrecht, 1996).
  3. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic crystal, (Princeton, 1995).
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  6. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, No. 2, 209–229 (1994).
    [Crossref]
  7. A. van Blaaderen, “Opals in a new light,” Science 282, 887–888 (1998); and references therein.
    [Crossref]
  8. C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
    [Crossref]
  9. S. Noda and A. Sasaki, “New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,” Jpn. J. Appl. Phys. 36, 1907–1911(1997).
    [Crossref]
  10. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
    [Crossref]
  11. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [Crossref] [PubMed]
  12. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
    [Crossref]
  13. Y. V. Miklyaev el al. “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
    [Crossref]
  14. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
    [Crossref]
  15. A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1997).
    [Crossref]
  16. O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
    [Crossref] [PubMed]
  17. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [Crossref] [PubMed]
  18. K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technology B 16, 1115–1122 (1998).
    [Crossref]
  19. M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
    [Crossref]
  20. M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
    [Crossref]
  21. K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
    [Crossref]
  22. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
    [Crossref]
  23. M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
    [Crossref] [PubMed]
  24. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [Crossref] [PubMed]
  25. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
    [Crossref]
  26. P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
    [Crossref]
  27. C. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 0466051–04660518 (2005).
    [Crossref]
  28. O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).
  29. J. C. W. Lee and C. T. Chan, “Polarization gap in spiral photonic structures,” (2005), http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.

2005 (3)

M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
[Crossref] [PubMed]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

C. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 0466051–04660518 (2005).
[Crossref]

2004 (3)

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

2003 (3)

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Y. V. Miklyaev el al. “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

2002 (1)

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

2001 (1)

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

2000 (2)

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

1999 (1)

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[Crossref]

1998 (3)

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technology B 16, 1115–1122 (1998).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

A. van Blaaderen, “Opals in a new light,” Science 282, 887–888 (1998); and references therein.
[Crossref]

1997 (3)

S. Noda and A. Sasaki, “New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,” Jpn. J. Appl. Phys. 36, 1907–1911(1997).
[Crossref]

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1997).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
[Crossref] [PubMed]

1996 (1)

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
[Crossref]

1994 (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, No. 2, 209–229 (1994).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Arbet-Engels, V.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
[Crossref]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Blaaderen, A. van

A. van Blaaderen, “Opals in a new light,” Science 282, 887–888 (1998); and references therein.
[Crossref]

Blanford, C. F.

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

Brett, M. J.

M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
[Crossref] [PubMed]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[Crossref]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technology B 16, 1115–1122 (1998).
[Crossref]

Broer, D. J.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[Crossref]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Busch, K.

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Chan, C. T.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

J. C. W. Lee and C. T. Chan, “Polarization gap in spiral photonic structures,” (2005), http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.

Chan, C. Y. M.

C. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 0466051–04660518 (2005).
[Crossref]

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Cheng, C. C.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
[Crossref]

Cheng, W.

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

Chutinan, A.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1997).
[Crossref]

Dedman, E. R.

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

Denning, R. G.

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

Denningand, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Deubel, M.

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Deuble, M.

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

Dunn, B.

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Freymann, G. Von

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Jensen, M. O.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic crystal, (Princeton, 1995).

John, S.

C. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 0466051–04660518 (2005).
[Crossref]

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

Kaso, A.

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Kawata, S.

Kennedy, S. R.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Lee, J. C. W.

J. C. W. Lee and C. T. Chan, “Polarization gap in spiral photonic structures,” (2005), http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Martini, I. B.

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

Maruo, S.

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic crystal, (Princeton, 1995).

Miklyaev, Y. V.

Y. V. Miklyaev el al. “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

Nakamura, O.

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

Noda, S.

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1997).
[Crossref]

S. Noda and A. Sasaki, “New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,” Jpn. J. Appl. Phys. 36, 1907–1911(1997).
[Crossref]

Pang, Y. K.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, No. 2, 209–229 (1994).
[Crossref]

Pereura, S.

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

Robbie, K.

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[Crossref]

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technology B 16, 1115–1122 (1998).
[Crossref]

Roche, O. M.

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

Sasaki, A.

S. Noda and A. Sasaki, “New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,” Jpn. J. Appl. Phys. 36, 1907–1911(1997).
[Crossref]

Scherer, A.

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
[Crossref]

Schwartz, B. J.

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

Sheng, P.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Sit, J. C.

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technology B 16, 1115–1122 (1998).
[Crossref]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Soukoulis, C. M.

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

C. M. Soukoulis, Photonic Band Gaps and Localization, (Plenum, New York, 1993).

C. M. Soukoulis, Photonic band gap materials, (Kluwer, Dordrecht, 1996).

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Tam, W. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Toader, O.

C. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 0466051–04660518 (2005).
[Crossref]

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

Wang, H. Z.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Wang, X.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

Wegener, M.

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Wei, P. W.

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

Winn, J.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic crystal, (Princeton, 1995).

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Yablonovitch, E.

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Zeng, Z. H.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Zubrzychi, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

Adv. Mat. (1)

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mat. 15, 1526–1528 (2003).
[Crossref]

Adv. Mater. (2)

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[Crossref]

P. W. Wei, W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438–1441, (2000).
[Crossref]

App. Phys. Lett. (1)

M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slatted Pore” photonic crystals,” App. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Appl. Phys. Lett. (2)

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Y. V. Miklyaev el al. “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41, No. 2, 209–229 (1994).
[Crossref]

J. Vac. Sci. Technology B (1)

K. Robbie, J. C. Sit, and M. J. Brett, “Advanced techniques for glancing angle deposition,” J. Vac. Sci. Technology B 16, 1115–1122 (1998).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Noda and A. Sasaki, “New realization method for three-dimensional photonic crystal in the optical wavelength region: Experimental Consideration,” Jpn. J. Appl. Phys. 36, 1907–1911(1997).
[Crossref]

Nano Lett. (1)

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, “Fabrication of tetragonal square spiral photonic crystals,” Nano Lett. 2, 59–62 (2002).
[Crossref]

Nature (3)

K. Robbie, D. J. Broer, and M. J. Brett, “Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure,” Nature 399, 764–766 (1999).
[Crossref]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzychi, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths ,” Nature 394, 251–253 (1998).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denningand, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[Crossref] [PubMed]

Nature Mater. (1)

M. Deuble, G. Von Freymann, M. Wegener, S. Pereura, K. Busch, and C. M. Soukoulis “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Chutinan and S. Noda, “Spiral three-dimensional photonic-band-gap structure,” Phys. Rev. B 57, 2006–2008 (1997).
[Crossref]

Phys. Rev. E (1)

C. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 0466051–04660518 (2005).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Physica Scr. (1)

C. C. Cheng, V. Arbet-Engels, A. Scherer, and E. Yablonovitch , “Nanofabricated three dimensional photonic crystals operating at topical wavelenghts,” Physica Scr. T68, 17–20 (1996).
[Crossref]

Science (3)

A. van Blaaderen, “Opals in a new light,” Science 282, 887–888 (1998); and references therein.
[Crossref]

O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001).
[Crossref] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[Crossref] [PubMed]

Other (5)

C. M. Soukoulis, Photonic Band Gaps and Localization, (Plenum, New York, 1993).

C. M. Soukoulis, Photonic band gap materials, (Kluwer, Dordrecht, 1996).

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic crystal, (Princeton, 1995).

O. M. Roche, D. N. Sharp, E. R. Dedman, A. J. Turberfield, C. F. Blanford, and R. G. Denning, “Optically active photonic crystals by holographic lithography,” Abstract in PECS-VI, (2005).

J. C. W. Lee and C. T. Chan, “Polarization gap in spiral photonic structures,” (2005), http://arxiv.org/ftp/physics/papers/0508/0508015.pdf.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The 6+1 beam configuration setup.

Fig. 2.
Fig. 2.

Intensity contour surfaces of (a) and (c) left handed and (b) and (d) right handed spirals using the 6+1 beams interference of Eq. (3).

Fig.3.
Fig.3.

SEM images of spirals: (a) overall (b) close-up views. (c) Structure with out off phase interference. Scale bar is: (a) 2 μm, (b) 1 μm, and (c) 1 μm..

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k n = k ( cos 2 ( n 1 ) π 6 sin φ , sin 2 ( n 1 ) π 6 sin φ , cos φ ) ,
k 0 = k ( 0 , 0 , 1 ) .
I ( r ) = n , m E n e i k n · r i δ n · E m * e i k m · r + i δ m ,
E 0 = E 0 2 ( 1 , ± i , 0 ) .

Metrics