C. L. Lee and Y. C. Lai, “Optimal Narrowband Dispersion Less Fiber Bragg Grating Filters with Short Grating Length and Smooth Dispersion Profile,” Opt. Commun. 235, 99–106 (2004).

[Crossref]

C. L. Lee and Y. C. Lai, “Long-Period Fiber Grating Filter Synthesis Using Evolutionary Programming,” Fiber Int. Opt. 23, 249–261 (2004).

[Crossref]

A. Gill, K. Peters, and M. Studer, “Genetic Algorithm for the Reconstruction of Bragg Grating Sensor Strain Profiles,” Meas. Sci. Technol. 15, 1877–1884 (2004).

[Crossref]

H.-C. Cheng and Y.-L. Lo, “Arbitrary Strain Distribution Measurement Using a Genetic Algorithm Approach and Two Fiber Bragg Grating Intensity Spectra,” Opt. Comm. 239, 323–332 (2004).

[Crossref]

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

S. Manos and L. Poladian, “Optical fibre design using Evolutionary Strategies,” Eng. Comp. 21, 564–576 (2004).

[Crossref]

S. F. Shu, Y. Lai, and C. L. Pan, “Learning Evolution Design of Multiband-Transmission Fiber Grating Filters,” Opt. Eng. 42, 2856–2860 (2003).

[Crossref]

P. Dong, J. Azana, and A. G. Kirk, “Synthesis of Fiber Bragg Grating Parameters from Reflectivity by Means of a Simulated Annealing Algorithm,” Opt. Comm. 228, 303–308 (2003).

[Crossref]

D. Wiesman, R. Germann, G.-L. Bona, C. David, D. Erni, and H. Jackel, “Add-Drop Filter Based on Apodized Surface-Corrugated Gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).

[Crossref]

G.-W. Chern and L. A. Wang, “Design of Binary Long-Period Fiber Grating Filters by the Inverse-Scattering Method with Genetic Algorithm Optimization,” J. Opt. Soc. Am. A 19, 772–780 (2002).

[Crossref]

F. Casagrande, P. Crespi, A. M. Grassi, A. Lulli, R. P. Kenny, and M. P. Whelan, “From The Reflected Spectrum to the Properties of a Fiber Bragg Grating: A Genetic Algorithm Approach with Application to Distributed Strain Sensing,” Appl. Opt. 41, 5238–5244 (2002).

[Crossref]
[PubMed]

C. L. Lee and Y. Lai, “Evolutionary Programming Synthesis of Optimal Long-Period Fiber Grating Filters for EDFA Gain Flattening,” IEEE Photonics Technol. Lett. 14, 1557–1559 (2002).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[Crossref]

D. Correia, V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, “Genetic-Algorithm and Finite-Element Approach to the Synthesis of Dispersion-Flattened Fiber,” Microwave Opt. Techn. Lett. 31, 245–248 (2001).

[Crossref]

G. Cormier, R. Boudreau, and S. Theriault, “Real-Coded Genetic Algorithm for Bragg Grating Parameter Synthesis,” J. Opt. Soc. Am. B 18, 1771–1776 (2001).

[Crossref]

R. Feced, M. N. Zervas, and M. A. Muriel, “An Efficient Inverse Scattering Algorithm for the Design of Nonuni-form Fiber Bragg Gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[Crossref]

K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems 9, 115–148 (1995).

M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Applied Optics 26, 3474–3478 (1987).

[Crossref]
[PubMed]

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a bicriterion formulation of the problems of intergrated system identification and system optimization,” IEEE Trans. Sys. Man and Cyb. 1, 296–297 (1971).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[Crossref]

K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems 9, 115–148 (1995).

S. Baskar, A. Alphones, N. Q. Ngo, P. N. Suganthan, and P. Shun, “Design of Optimal Length Low-Dispersion FBG Filter Using Covariance Matrix Adapted Evolution,” Opt. ExpressTo Appear (2005).

M. Attygalle, B. Ashton, A. Nirmalathas, L. Poladian, and W. Padden, “Novel technique for all-optical clock extraction using fibre bragg gratings,” in OptoElectronics and Communications Conference, Shanghai, China, pp. 13–16 (2003).

M. Attygalle, B. Ashton, A. Nirmalathas, L. Poladian, and W. Padden, “Novel technique for all-optical clock extraction using fibre bragg gratings,” in OptoElectronics and Communications Conference, Shanghai, China, pp. 13–16 (2003).

P. Dong, J. Azana, and A. G. Kirk, “Synthesis of Fiber Bragg Grating Parameters from Reflectivity by Means of a Simulated Annealing Algorithm,” Opt. Comm. 228, 303–308 (2003).

[Crossref]

S. Baskar, A. Alphones, N. Q. Ngo, P. N. Suganthan, and P. Shun, “Design of Optimal Length Low-Dispersion FBG Filter Using Covariance Matrix Adapted Evolution,” Opt. ExpressTo Appear (2005).

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

H.-C. Cheng and Y.-L. Lo, “Arbitrary Strain Distribution Measurement Using a Genetic Algorithm Approach and Two Fiber Bragg Grating Intensity Spectra,” Opt. Comm. 239, 323–332 (2004).

[Crossref]

D. Correia, V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, “Genetic-Algorithm and Finite-Element Approach to the Synthesis of Dispersion-Flattened Fiber,” Microwave Opt. Techn. Lett. 31, 245–248 (2001).

[Crossref]

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science 290, 2319–2323 (2000).

[Crossref]
[PubMed]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[Crossref]

K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems 9, 115–148 (1995).

P. Dong, J. Azana, and A. G. Kirk, “Synthesis of Fiber Bragg Grating Parameters from Reflectivity by Means of a Simulated Annealing Algorithm,” Opt. Comm. 228, 303–308 (2003).

[Crossref]

R. Feced, M. N. Zervas, and M. A. Muriel, “An Efficient Inverse Scattering Algorithm for the Design of Nonuni-form Fiber Bragg Gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[Crossref]

A. Gill, K. Peters, and M. Studer, “Genetic Algorithm for the Reconstruction of Bragg Grating Sensor Strain Profiles,” Meas. Sci. Technol. 15, 1877–1884 (2004).

[Crossref]

D. E. Goldberg, Genetic Algorithms for Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a bicriterion formulation of the problems of intergrated system identification and system optimization,” IEEE Trans. Sys. Man and Cyb. 1, 296–297 (1971).

[Crossref]

D. Correia, V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, “Genetic-Algorithm and Finite-Element Approach to the Synthesis of Dispersion-Flattened Fiber,” Microwave Opt. Techn. Lett. 31, 245–248 (2001).

[Crossref]

P. Dong, J. Azana, and A. G. Kirk, “Synthesis of Fiber Bragg Grating Parameters from Reflectivity by Means of a Simulated Annealing Algorithm,” Opt. Comm. 228, 303–308 (2003).

[Crossref]

S. F. Shu, Y. Lai, and C. L. Pan, “Learning Evolution Design of Multiband-Transmission Fiber Grating Filters,” Opt. Eng. 42, 2856–2860 (2003).

[Crossref]

C. L. Lee and Y. Lai, “Evolutionary Programming Synthesis of Optimal Long-Period Fiber Grating Filters for EDFA Gain Flattening,” IEEE Photonics Technol. Lett. 14, 1557–1559 (2002).

[Crossref]

C. L. Lee and Y. C. Lai, “Long-Period Fiber Grating Filter Synthesis Using Evolutionary Programming,” Fiber Int. Opt. 23, 249–261 (2004).

[Crossref]

C. L. Lee and Y. C. Lai, “Optimal Narrowband Dispersion Less Fiber Bragg Grating Filters with Short Grating Length and Smooth Dispersion Profile,” Opt. Commun. 235, 99–106 (2004).

[Crossref]

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science 290, 2319–2323 (2000).

[Crossref]
[PubMed]

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a bicriterion formulation of the problems of intergrated system identification and system optimization,” IEEE Trans. Sys. Man and Cyb. 1, 296–297 (1971).

[Crossref]

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001). URL citeseer.ist.psu.edu/zitzler02spea.html.

C. L. Lee and Y. C. Lai, “Long-Period Fiber Grating Filter Synthesis Using Evolutionary Programming,” Fiber Int. Opt. 23, 249–261 (2004).

[Crossref]

C. L. Lee and Y. C. Lai, “Optimal Narrowband Dispersion Less Fiber Bragg Grating Filters with Short Grating Length and Smooth Dispersion Profile,” Opt. Commun. 235, 99–106 (2004).

[Crossref]

C. L. Lee and Y. Lai, “Evolutionary Programming Synthesis of Optimal Long-Period Fiber Grating Filters for EDFA Gain Flattening,” IEEE Photonics Technol. Lett. 14, 1557–1559 (2002).

[Crossref]

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

N. Q. Ngo, R. T. Zheng, S. C. Tjin, and S. Y. Li, “Tabu Search Synthesis of Cascaded Fiber Bragg Gratings for Linear Phase Filters,” Opt. Comm. 2004, 79–83 (241).

H.-C. Cheng and Y.-L. Lo, “Arbitrary Strain Distribution Measurement Using a Genetic Algorithm Approach and Two Fiber Bragg Grating Intensity Spectra,” Opt. Comm. 239, 323–332 (2004).

[Crossref]

S. Manos and L. Poladian, “Optical fibre design using Evolutionary Strategies,” Eng. Comp. 21, 564–576 (2004).

[Crossref]

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[Crossref]

R. Feced, M. N. Zervas, and M. A. Muriel, “An Efficient Inverse Scattering Algorithm for the Design of Nonuni-form Fiber Bragg Gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[Crossref]

N. Q. Ngo, R. T. Zheng, S. C. Tjin, and S. Y. Li, “Tabu Search Synthesis of Cascaded Fiber Bragg Gratings for Linear Phase Filters,” Opt. Comm. 2004, 79–83 (241).

S. Baskar, A. Alphones, N. Q. Ngo, P. N. Suganthan, and P. Shun, “Design of Optimal Length Low-Dispersion FBG Filter Using Covariance Matrix Adapted Evolution,” Opt. ExpressTo Appear (2005).

M. Attygalle, B. Ashton, A. Nirmalathas, L. Poladian, and W. Padden, “Novel technique for all-optical clock extraction using fibre bragg gratings,” in OptoElectronics and Communications Conference, Shanghai, China, pp. 13–16 (2003).

M. Attygalle, B. Ashton, A. Nirmalathas, L. Poladian, and W. Padden, “Novel technique for all-optical clock extraction using fibre bragg gratings,” in OptoElectronics and Communications Conference, Shanghai, China, pp. 13–16 (2003).

S. F. Shu, Y. Lai, and C. L. Pan, “Learning Evolution Design of Multiband-Transmission Fiber Grating Filters,” Opt. Eng. 42, 2856–2860 (2003).

[Crossref]

A. Gill, K. Peters, and M. Studer, “Genetic Algorithm for the Reconstruction of Bragg Grating Sensor Strain Profiles,” Meas. Sci. Technol. 15, 1877–1884 (2004).

[Crossref]

S. Manos and L. Poladian, “Optical fibre design using Evolutionary Strategies,” Eng. Comp. 21, 564–576 (2004).

[Crossref]

L. Poladian, “Simple Grating Synthesis Algorithm,” Opt. Lett. 25, 787–789 (2000).

[Crossref]

M. Attygalle, B. Ashton, A. Nirmalathas, L. Poladian, and W. Padden, “Novel technique for all-optical clock extraction using fibre bragg gratings,” in OptoElectronics and Communications Conference, Shanghai, China, pp. 13–16 (2003).

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[Crossref]

D. Correia, V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, “Genetic-Algorithm and Finite-Element Approach to the Synthesis of Dispersion-Flattened Fiber,” Microwave Opt. Techn. Lett. 31, 245–248 (2001).

[Crossref]

M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Applied Optics 26, 3474–3478 (1987).

[Crossref]
[PubMed]

J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proc. of the First Int. Conf. on Genetic Algorithms, pp. 93–100 (1985).

S. F. Shu, Y. Lai, and C. L. Pan, “Learning Evolution Design of Multiband-Transmission Fiber Grating Filters,” Opt. Eng. 42, 2856–2860 (2003).

[Crossref]

S. Baskar, A. Alphones, N. Q. Ngo, P. N. Suganthan, and P. Shun, “Design of Optimal Length Low-Dispersion FBG Filter Using Covariance Matrix Adapted Evolution,” Opt. ExpressTo Appear (2005).

A. Gill, K. Peters, and M. Studer, “Genetic Algorithm for the Reconstruction of Bragg Grating Sensor Strain Profiles,” Meas. Sci. Technol. 15, 1877–1884 (2004).

[Crossref]

S. Baskar, A. Alphones, N. Q. Ngo, P. N. Suganthan, and P. Shun, “Design of Optimal Length Low-Dispersion FBG Filter Using Covariance Matrix Adapted Evolution,” Opt. ExpressTo Appear (2005).

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science 290, 2319–2323 (2000).

[Crossref]
[PubMed]

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001). URL citeseer.ist.psu.edu/zitzler02spea.html.

N. Q. Ngo, R. T. Zheng, S. C. Tjin, and S. Y. Li, “Tabu Search Synthesis of Cascaded Fiber Bragg Gratings for Linear Phase Filters,” Opt. Comm. 2004, 79–83 (241).

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a bicriterion formulation of the problems of intergrated system identification and system optimization,” IEEE Trans. Sys. Man and Cyb. 1, 296–297 (1971).

[Crossref]

M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Applied Optics 26, 3474–3478 (1987).

[Crossref]
[PubMed]

R. Feced, M. N. Zervas, and M. A. Muriel, “An Efficient Inverse Scattering Algorithm for the Design of Nonuni-form Fiber Bragg Gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[Crossref]

N. Q. Ngo, R. T. Zheng, S. C. Tjin, and S. Y. Li, “Tabu Search Synthesis of Cascaded Fiber Bragg Gratings for Linear Phase Filters,” Opt. Comm. 2004, 79–83 (241).

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001). URL citeseer.ist.psu.edu/zitzler02spea.html.

M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Applied Optics 26, 3474–3478 (1987).

[Crossref]
[PubMed]

K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems 9, 115–148 (1995).

S. Manos and L. Poladian, “Optical fibre design using Evolutionary Strategies,” Eng. Comp. 21, 564–576 (2004).

[Crossref]

C. L. Lee and Y. C. Lai, “Long-Period Fiber Grating Filter Synthesis Using Evolutionary Programming,” Fiber Int. Opt. 23, 249–261 (2004).

[Crossref]

R. Feced, M. N. Zervas, and M. A. Muriel, “An Efficient Inverse Scattering Algorithm for the Design of Nonuni-form Fiber Bragg Gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999).

[Crossref]

C. L. Lee and Y. Lai, “Evolutionary Programming Synthesis of Optimal Long-Period Fiber Grating Filters for EDFA Gain Flattening,” IEEE Photonics Technol. Lett. 14, 1557–1559 (2002).

[Crossref]

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a bicriterion formulation of the problems of intergrated system identification and system optimization,” IEEE Trans. Sys. Man and Cyb. 1, 296–297 (1971).

[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[Crossref]

D. Wiesman, R. Germann, G.-L. Bona, C. David, D. Erni, and H. Jackel, “Add-Drop Filter Based on Apodized Surface-Corrugated Gratings,” J. Opt. Soc. Am. B 20, 417–423 (2003).

[Crossref]

G. Cormier, R. Boudreau, and S. Theriault, “Real-Coded Genetic Algorithm for Bragg Grating Parameter Synthesis,” J. Opt. Soc. Am. B 18, 1771–1776 (2001).

[Crossref]

A. Gill, K. Peters, and M. Studer, “Genetic Algorithm for the Reconstruction of Bragg Grating Sensor Strain Profiles,” Meas. Sci. Technol. 15, 1877–1884 (2004).

[Crossref]

D. Correia, V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, “Genetic-Algorithm and Finite-Element Approach to the Synthesis of Dispersion-Flattened Fiber,” Microwave Opt. Techn. Lett. 31, 245–248 (2001).

[Crossref]

H.-C. Cheng and Y.-L. Lo, “Arbitrary Strain Distribution Measurement Using a Genetic Algorithm Approach and Two Fiber Bragg Grating Intensity Spectra,” Opt. Comm. 239, 323–332 (2004).

[Crossref]

N. Q. Ngo, R. T. Zheng, S. C. Tjin, and S. Y. Li, “Tabu Search Synthesis of Cascaded Fiber Bragg Gratings for Linear Phase Filters,” Opt. Comm. 2004, 79–83 (241).

P. Dong, J. Azana, and A. G. Kirk, “Synthesis of Fiber Bragg Grating Parameters from Reflectivity by Means of a Simulated Annealing Algorithm,” Opt. Comm. 228, 303–308 (2003).

[Crossref]

C. Caucheteur, F. Lhomme, K. Chah, M. Blondel, and P. Megret, “Fiber Bragg Grating Sensor Demodulation Technique by Synthesis of Grating Parameters from its Reflection Spectrum,” Opt. Comm. 240, 329–336 (2004).

[Crossref]

C. L. Lee and Y. C. Lai, “Optimal Narrowband Dispersion Less Fiber Bragg Grating Filters with Short Grating Length and Smooth Dispersion Profile,” Opt. Commun. 235, 99–106 (2004).

[Crossref]

S. F. Shu, Y. Lai, and C. L. Pan, “Learning Evolution Design of Multiband-Transmission Fiber Grating Filters,” Opt. Eng. 42, 2856–2860 (2003).

[Crossref]

J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science 290, 2319–2323 (2000).

[Crossref]
[PubMed]

M. Attygalle, B. Ashton, A. Nirmalathas, L. Poladian, and W. Padden, “Novel technique for all-optical clock extraction using fibre bragg gratings,” in OptoElectronics and Communications Conference, Shanghai, China, pp. 13–16 (2003).

S. Baskar, A. Alphones, N. Q. Ngo, P. N. Suganthan, and P. Shun, “Design of Optimal Length Low-Dispersion FBG Filter Using Covariance Matrix Adapted Evolution,” Opt. ExpressTo Appear (2005).

J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proc. of the First Int. Conf. on Genetic Algorithms, pp. 93–100 (1985).

D. E. Goldberg, Genetic Algorithms for Search, Optimization and Machine Learning (Addison-Wesley, 1989).

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Tech. Rep. 103, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001). URL citeseer.ist.psu.edu/zitzler02spea.html.