Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Diffraction by a black half plane: Modified theory of physical optics approach

Open Access Open Access

Abstract

The scattered fields from a black half plane which absorbs all the incoming electromagnetic energy are evaluated by defining a new modified theory of physical optics surface current. This current eliminates the reflected fields, coming from the first stationary point of the reflection integral and only creates a reflected diffracted field. The incident scattered fields are found from the same integral, written for the perfectly conducting half plane. The scattered fields are evaluated by using the stationary phase method and edge point technique. The evaluated fields are plotted numerically.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Modified theory of physical optics approach to wedge diffraction problems

Yusuf Z. Umul
Opt. Express 13(1) 216-224 (2005)

Modified theory of physical optics

Yusuf Z. Umul
Opt. Express 12(20) 4959-4972 (2004)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Reflection geometry from a PEC half plane
Fig. 2.
Fig. 2. Comparison of the PO and MTPO integrals for the places of the stationary points
Fig. 3.
Fig. 3. Comparison of MTPO and incident diffracted fields
Fig. 4.
Fig. 4. Comparison of MTPO and incident total fields
Fig. 5.
Fig. 5. MTPO and incident total diffracted fields
Fig. 6.
Fig. 6. MTPO and incident total fields
Fig. 7
Fig. 7 MTPO total diffracted fields

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

E rz = e j π 4 kE i 2 π 0 e jkx ' cos ϕ 0 e jkR kR sin ( β + ϕ 0 2 ) dx '
I ( k , r ) = 0 f ( r , x ' ) e jkg ( r , x ' ) dx '
f ( r , x ' ) = e j π 4 kE i 2 π sin ( β + ϕ 0 2 ) kR
g ( r , x ' ) = R x ' cos ϕ 0 = ρ cos γ + x ' ( cos β cos ϕ 0 )
cos ϕ 0 cos β = 0
β s 1 = ϕ 0 , β s 2 = 2 π ϕ 0
I f ( x s ) e j [ kg ( x s ) + π 4 ] 2 π kg ' ' ( x s )
I E i e jkρ cos ( ϕ + ϕ 0 )
E rz = e j π 4 kE i 2 π 0 e jkx ' cos ϕ 0 e jkR kR sin ( β ϕ 0 2 ) dx '
I f ( x e ) jkg ' ( x e ) e jkg ( x e )
E rds = E i 2 π cos ϕ ϕ 0 2 cos ϕ + cos ϕ 0 e jkρ
J MTPO = e z 2 E i Z 0 sin β + ϕ 0 2 e jkx ' cos ϕ 0
J MTPO = 2 H i ( e x cos β ϕ 0 2 e y sin β ϕ 0 2 ) e jkx ' cos ϕ 0
u A = u i + u di
u S = u r + u dr .
u S + u S = u i
( u S + u i + u di ) S + ( u S + u di ) S = u i
( u S + u di ) S + = ( u S + u di ) S
u S S = u di S
J es = n × H T S = 0
J ms = n × E T S = 0
J es = n 1 × H T S 0
J ms = n 1 × E T S 0
J es = e z E i Z 0 sin β + ϕ 0 2 sin β + ϕ 0 2 e jkx ' cos ϕ 0
J ms = E i ( e x cos β ϕ 0 2 e y sin β ϕ 0 2 ) sin β ϕ 0 2 e jkx ' cos ϕ 0
J es = n × H T S = 0
n × E T S = 0
J es = n 1 × H T S 0
n 1 × E T S = 0
J es = e z 2 E i Z 0 sin β + ϕ 0 2 sin β ϕ 0 2 e jkx ' cos ϕ 0
E sz = kE i 2 π e j π 4 0 e jkx ' cos ϕ 0 sin β ϕ 0 2 sin β + ϕ 0 2 e jkR kR dx '
n × H T S = 0
J ms = n × E T S = 0
n × H T S = 0
J ms = n × E T S 0
J ms = 2 E i ( e x cos β ϕ 0 2 e y sin β ϕ 0 2 ) sin β ϕ 0 2 e jkx ' cos ϕ 0
F = ε 0 4 π ∫∫ s J ms e jkR R dS ' .
E s = e j π 4 2 2 π 0 × ( J ms e jkR kR ) dx '
jk e jkR kR ( R x sin β ϕ 0 2 + R y cos β ϕ 0 2 ) = jk e jkR kR sin β + ϕ 0 2
E sz = kE i 2 π e j π 4 0 e jkx ' cos ϕ 0 sin β ϕ 0 2 sin β + ϕ 0 2 e jkR kR dx '
E tz = kE i 2 π e j π 4 ( e jkx ' cos ϕ 0 sin β + ϕ 0 2 e jkR kR dx ' 0 e jkx ' cos ϕ 0 sin β ϕ 0 2 sin β + ϕ 0 2 e jkR kR dx ' )
E is = e jkρ cos ( ϕ ϕ 0 ) u ( ξ i ) e j π 4 2 2 π cos ϕ ϕ 0 2 e jkρ
E dr = e j π 4 2 2 π e jkρ
E dr = e j π 4 2 2 π ( 1 1 cos ϕ ϕ 0 2 ) e jkρ
E dtc = e j π 4 2 2 π ( sgn ( ξ i ) cos ϕ 0 2 1 cos ϕ ϕ 0 2 ) e jkρ
E di = e j π 4 2 2 π e j 2 cos 2 ϕ ϕ 0 2 2 cos ϕ ϕ 0 2 e jkρ cos ( ϕ ϕ 0 )
E di = F ̂ ( 2 cos ϕ ϕ 0 2 ) e jkρ cos ( ϕ ϕ 0 )
E diu = F ( ξ i ) sgn ( ξ i ) e jkρ cos ( ϕ ϕ 0 )
F ( x ) = e j π 4 π x e jt 2 dt .
E Su = E i e jkρ cos ( ϕ ϕ 0 ) F ( ξ i ) + E i e j π 4 2 2 π cos ( ϕ 0 2 ) e jkρ sgn ( ξ i )
J es = e z 2 E i Z 0 sin β + ϕ 0 2 sin β ϕ 0 2 cos ϕ 0 2 e jkx ' cos ϕ 0 sgn ( ξ i )
E sz = e jkρ cos ( ϕ ϕ 0 ) F ( 2 cos ϕ ϕ 0 2 )
E Sz = e jkρ cos ( ϕ ϕ 0 ) F ( 2 cos ϕ ϕ 0 2 ) sgn ( 2 cos ϕ ϕ 0 2 ) .
E dr = e j π 4 2 2 π e j 2 cos 2 ϕ 0 2 2 cos ϕ 0 2 e jkρ cos ϕ 0 sgn ( ξ i )
E dr = F ̂ ( 2 cos ϕ 0 2 ) e jkρ cos ϕ 0 sgn ( ξ i )
E dr = F ( 2 cos ϕ 0 2 ) sgn ( 2 cos ϕ 0 2 ) sgn ( ξ i ) e jkρ cos ϕ 0
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.