Abstract

Near-field nano-patterning greatly simplifies holographic lithography, but deformations in formed structures are potentially severe. A fast and efficient comprehensive model was developed to predict geometry more rigorously. Numerical results show simple intensity-threshold methods do not accurately predict shape or optical behavior. By modeling sources with partial coherence, unpolarized light, and an angular spectrum, it is shown that standard UV lamps can be used to form 3D structures.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, Photonic Crystals, (Princeton University Press, Princeton, New Jersy, 1995).
  2. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
    [CrossRef]
  3. L. Z. Cai, X. L. Yang, Y. R. Wang, �??Formation of three-dimensional periodic microstructures by interference of four noncoplanar beams,�?? J. Opt. Soc. Am. A 19, 2238-2244 (2002).
  4. L. Z. Cai, X. L. Yang, Y. R. Wang, �??All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,�?? Opt. Lett. 27(11), 900-902 (2002).
  5. S. Jeon, G. Wiederrecht, J. A. Rogers, �??Photonic systems formed by proximity field nanopatterning,�?? in Proceedings of SPIE Micromachining Technology for Micro-Optics and Nano-Optics III 5720, E. G. Johnson, ed. (SPIE, Bellingham, WA, 2005), pp. 187-195.
  6. R. C. Rumpf, E. G. Johnson, �??Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,�?? J. Opt. Soc. Am. A 21, 1703-1713 (2004).
    [CrossRef]
  7. R. C. Rumpf, E. G. Johnson, �??Modeling the formation of photonic crystals by holographic lithography,�?? in Proceedings of SPIE Micromachining Technology for Micro-Optics and Nano-Optics III 5720, E. G. Johnson, ed. (SPIE, Bellingham, WA, 2005), pp. 18-26.
  8. S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, �??Improved notch model for resist dissolution in lithography simulation,�?? in Proceedings of SPIE Advances in Resist Technology and Processing XVIII 4345, F. M. Houlihan, ed., 912-920 (2001).
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,�?? J. Opt. Soc. Am. A 12, 1068-1076 (1995).
  10. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, �??Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,�?? J. Opt. Soc. Am. A 12, 1077-1086 (1995).
  11. F. H. Dill, �??Positive Optical Lithography,�?? Conf. IEEE International Solid-State Circuits, 54-55 (1975).
  12. Y. Shacham-Diamond, �??Modeling of Novolak-Based Positive Photoresist Exposed to KrF Excimer Laser UV Radiation at 248 nm,�?? IEEE Trans. Semiconductor Manufacturing 3(2), 37-44 (1990).
  13. Z. Ling, K. Lian, L. Jian, �??Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,�?? in Proceedings of SPIE Advances in Resist Technology and Processing XVII, 1019-1027 (2000).
  14. J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (Cambridge University Press, New York, New York, 1999).
  15. �??The SU-8 photoresist for MEMS,�?? <a href="http://aveclafaux.freeservers.com/SU-8.html."> http://aveclafaux.freeservers.com/SU-8.html</a>
  16. EXFO Application Note 088, �??High Power UV Light Sources,�?? (EXFO, 2005) <a href="http://www.exfo-uv.com/App_Notes/High_Power_UV_Light_Sources.pdf."> http://www.exfo-uv.com/App_Notes/High_Power_UV_Light_Sources.pdf.</a>
  17. MicroChem Product Data Sheet for SU-8 2007, �??NANOTM SU-8 2000 Negative Tone Photoresist Formulations 2002-2025,�?? (MicroChem, 2005), <a href="http://www.microchem.com/.">http://www.microchem.com/.</a>

Appl. Phys. Lett. (1)

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. Freymann, K. Busch, W. Kock, C. Enkrich, M. Deubel, M. Wegener, �??Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,�?? Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Conf. IEEE International Solid-State Cir (1)

F. H. Dill, �??Positive Optical Lithography,�?? Conf. IEEE International Solid-State Circuits, 54-55 (1975).

IEEE Trans. Semiconductor Manufacturing (1)

Y. Shacham-Diamond, �??Modeling of Novolak-Based Positive Photoresist Exposed to KrF Excimer Laser UV Radiation at 248 nm,�?? IEEE Trans. Semiconductor Manufacturing 3(2), 37-44 (1990).

J. Opt. Soc. Am. A (4)

Opt. Lett. (1)

Proc. SPIE (4)

S. Jeon, G. Wiederrecht, J. A. Rogers, �??Photonic systems formed by proximity field nanopatterning,�?? in Proceedings of SPIE Micromachining Technology for Micro-Optics and Nano-Optics III 5720, E. G. Johnson, ed. (SPIE, Bellingham, WA, 2005), pp. 187-195.

R. C. Rumpf, E. G. Johnson, �??Modeling the formation of photonic crystals by holographic lithography,�?? in Proceedings of SPIE Micromachining Technology for Micro-Optics and Nano-Optics III 5720, E. G. Johnson, ed. (SPIE, Bellingham, WA, 2005), pp. 18-26.

S. Robertson, E. Pavelchek, W. Hoppe, R. Wildfeuer, �??Improved notch model for resist dissolution in lithography simulation,�?? in Proceedings of SPIE Advances in Resist Technology and Processing XVIII 4345, F. M. Houlihan, ed., 912-920 (2001).

Z. Ling, K. Lian, L. Jian, �??Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters,�?? in Proceedings of SPIE Advances in Resist Technology and Processing XVII, 1019-1027 (2000).

Other (5)

J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (Cambridge University Press, New York, New York, 1999).

�??The SU-8 photoresist for MEMS,�?? <a href="http://aveclafaux.freeservers.com/SU-8.html."> http://aveclafaux.freeservers.com/SU-8.html</a>

EXFO Application Note 088, �??High Power UV Light Sources,�?? (EXFO, 2005) <a href="http://www.exfo-uv.com/App_Notes/High_Power_UV_Light_Sources.pdf."> http://www.exfo-uv.com/App_Notes/High_Power_UV_Light_Sources.pdf.</a>

MicroChem Product Data Sheet for SU-8 2007, �??NANOTM SU-8 2000 Negative Tone Photoresist Formulations 2002-2025,�?? (MicroChem, 2005), <a href="http://www.microchem.com/.">http://www.microchem.com/.</a>

John D. Joannopoulos, Robert D. Meade, Joshua N. Winn, Photonic Crystals, (Princeton University Press, Princeton, New Jersy, 1995).

Supplementary Material (1)

» Media 1: AVI (847 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics