Abstract

A confined, evanescent nano-source based on the excitation of Surface Plasmon Polaritons (SPP) on structured thin metal films is proposed. With the help of a suitable cavity, we numerically demonstrate that it is possible to trap SPP over a spatial region smaller than the diffraction limit. In particular, the enhanced plasmonic field associated with the zero-order cavity mode can be used as a virtual probe in scanning near-field microscopy systems. The proposed device shows both the advantages of a localized, non-radiating source and the high sensitivity of SPP-based sensors. The lateral resolution is limited by the lateral extension of the virtual probe. Results from simulated scans of small objects reveal that details with feature sizes down to 50 nm can be detected.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny, E. J. Śnchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef] [PubMed]
  3. L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
    [CrossRef] [PubMed]
  4. L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
    [CrossRef]
  5. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
    [CrossRef]
  6. E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
    [CrossRef]
  7. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press
  8. T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273–278 (2000).
    [CrossRef]
  9. T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319–323 (2003).
    [CrossRef] [PubMed]
  10. Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
    [CrossRef]
  11. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef]
  12. W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
    [CrossRef]
  13. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 1670–2673 (1996).
    [CrossRef]
  14. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
    [CrossRef] [PubMed]
  15. T. Okamoto, F. HD́hili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3978–3970 (2004).
    [CrossRef]
  16. A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
    [CrossRef]
  17. H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
    [CrossRef]
  18. D. C. Skigin and R. A. Depine, “Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings,” Phys. Rev. E 63, 046608-1–046608-10 (2001).
    [CrossRef]
  19. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photonic band gaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998).
    [CrossRef]
  20. K. M. Engenhardt and S. Gregory, “Surface-plasmon-polariton excitation of optical microcavities and second-harmonic emission,” J. Opt. Soc. Am. B 17, 593–599 (2000).
    [CrossRef]
  21. P. André, F. Charra, and M. P. Pileni, “Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,” J. Appl. Phys. 91, 3028–3036 (2002).
    [CrossRef]
  22. T. Okamoto, T. Kobayashi, and I. Yamaguchi, “Local plasmon sensor with gold colloid monolayers deposited upon glass subtrates,” Opt. Lett. 25, 372–374 (2000).
    [CrossRef]
  23. C. Rockstuhl, M. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nano-particles,” J. Opt. Soc. Am. A,  21, 1761–1768 (2004)
    [CrossRef]
  24. L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
    [CrossRef]
  25. L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
    [CrossRef]
  26. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
    [CrossRef]
  27. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
    [CrossRef]
  28. W.-C. Tan, T. W. Preist, J. R. Sambles, M. B. Sobnack, and N. P. Wanstall, “Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation”, J. Opt. Soc. Am. A 15, 2365–2372 (1998).
    [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  30. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
    [CrossRef]
  31. B. Fisher, T. M. Fisher, and W. Knoll, “Dispersion of surface plasmons in rectangular, sinusoidal and inchoerent silver gratings,” J. Appl. Phys. 75, 1577–1581 (1994).
    [CrossRef]
  32. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of gratings theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
    [CrossRef]
  33. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
    [CrossRef]

2004 (3)

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

T. Okamoto, F. HD́hili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3978–3970 (2004).
[CrossRef]

C. Rockstuhl, M. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nano-particles,” J. Opt. Soc. Am. A,  21, 1761–1768 (2004)
[CrossRef]

2003 (5)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319–323 (2003).
[CrossRef] [PubMed]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

2002 (5)

Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
[CrossRef]

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

P. André, F. Charra, and M. P. Pileni, “Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,” J. Appl. Phys. 91, 3028–3036 (2002).
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

2001 (4)

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of gratings theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
[CrossRef]

D. C. Skigin and R. A. Depine, “Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings,” Phys. Rev. E 63, 046608-1–046608-10 (2001).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

2000 (3)

1999 (1)

1998 (3)

W.-C. Tan, T. W. Preist, J. R. Sambles, M. B. Sobnack, and N. P. Wanstall, “Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation”, J. Opt. Soc. Am. A 15, 2365–2372 (1998).
[CrossRef]

L. Novotny, E. J. Śnchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photonic band gaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998).
[CrossRef]

1997 (1)

1996 (3)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 1670–2673 (1996).
[CrossRef]

L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

1995 (1)

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

1994 (1)

B. Fisher, T. M. Fisher, and W. Knoll, “Dispersion of surface plasmons in rectangular, sinusoidal and inchoerent silver gratings,” J. Appl. Phys. 75, 1577–1581 (1994).
[CrossRef]

1991 (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aeschimann, L.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Akiyama, T.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

André, P.

P. André, F. Charra, and M. P. Pileni, “Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,” J. Appl. Phys. 91, 3028–3036 (2002).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Baida, Fadi I.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photonic band gaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998).
[CrossRef]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 1670–2673 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Betzig, E.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Beversluis, M. R.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Cao, Q.

Chandezon, J.

L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
[CrossRef]

L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
[CrossRef]

Charra, F.

P. André, F. Charra, and M. P. Pileni, “Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,” J. Appl. Phys. 91, 3028–3036 (2002).
[CrossRef]

Chen, Y.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Cotter, N. P. K.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Courjon, D.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319–323 (2003).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273–278 (2000).
[CrossRef]

de Roij, N. F.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings,” Phys. Rev. E 63, 046608-1–046608-10 (2001).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Descrovi, E.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Ditlabacher, H.

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Eckert, R.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

Engenhardt, K. M.

Erland, J.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Fisher, B.

B. Fisher, T. M. Fisher, and W. Knoll, “Dispersion of surface plasmons in rectangular, sinusoidal and inchoerent silver gratings,” J. Appl. Phys. 75, 1577–1581 (1994).
[CrossRef]

Fisher, T. M.

B. Fisher, T. M. Fisher, and W. Knoll, “Dispersion of surface plasmons in rectangular, sinusoidal and inchoerent silver gratings,” J. Appl. Phys. 75, 1577–1581 (1994).
[CrossRef]

Granet, G.

L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
[CrossRef]

L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
[CrossRef]

Gregory, S.

Grosjean, T.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319–323 (2003).
[CrossRef] [PubMed]

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273–278 (2000).
[CrossRef]

Güntherodt, H. J.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Harris, T. D.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

HD´hili, F.

T. Okamoto, F. HD́hili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3978–3970 (2004).
[CrossRef]

Heinzelmann, H.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

Herzig, H. P.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

C. Rockstuhl, M. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nano-particles,” J. Opt. Soc. Am. A,  21, 1761–1768 (2004)
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Hoheanau, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

Hong, Tao

Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
[CrossRef]

Hugonin, J. P.

Huser, T.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Hvam, J. M.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kawata, S.

T. Okamoto, F. HD́hili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3978–3970 (2004).
[CrossRef]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photonic band gaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998).
[CrossRef]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 1670–2673 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Knoll, W.

B. Fisher, T. M. Fisher, and W. Knoll, “Dispersion of surface plasmons in rectangular, sinusoidal and inchoerent silver gratings,” J. Appl. Phys. 75, 1577–1581 (1994).
[CrossRef]

Kobayashi, T.

Kostelak, R. L.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

Lalanne, P.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of gratings theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
[CrossRef]

Leitner, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Leosson, K.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Li, Dacheng

Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
[CrossRef]

Li, L.

L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
[CrossRef]

L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
[CrossRef]

Nakagawa, W.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Nash, D. J.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

L. Novotny, E. J. Śnchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Okamoto, T.

T. Okamoto, F. HD́hili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3978–3970 (2004).
[CrossRef]

T. Okamoto, T. Kobayashi, and I. Yamaguchi, “Local plasmon sensor with gold colloid monolayers deposited upon glass subtrates,” Opt. Lett. 25, 372–374 (2000).
[CrossRef]

Peyrade, D.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

Pileni, M. P.

P. André, F. Charra, and M. P. Pileni, “Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,” J. Appl. Phys. 91, 3028–3036 (2002).
[CrossRef]

Plumey, J. P.

L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999).
[CrossRef]

L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
[CrossRef]

Pohl, D. W.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Preist, T. W.

W.-C. Tan, T. W. Preist, J. R. Sambles, M. B. Sobnack, and N. P. Wanstall, “Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation”, J. Opt. Soc. Am. A 15, 2365–2372 (1998).
[CrossRef]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Rockstuhl, C.

Salt, M.

Sambles, J. R.

W.-C. Tan, T. W. Preist, J. R. Sambles, M. B. Sobnack, and N. P. Wanstall, “Calculation of photonic band structures of periodic multilayer grating systems by use of a curvilinear coordinate transformation”, J. Opt. Soc. Am. A 15, 2365–2372 (1998).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photonic band gaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998).
[CrossRef]

W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654–1661 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 1670–2673 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Silberstein, E.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of gratings theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001)
[CrossRef]

Skigin, D. C.

D. C. Skigin and R. A. Depine, “Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings,” Phys. Rev. E 63, 046608-1–046608-10 (2001).
[CrossRef]

Skovgaard, P. M.W.

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Snchez, E. J.

L. Novotny, E. J. Śnchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Sobnack, M. B.

Staufer, U.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Sun, Liqun

Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
[CrossRef]

Talneau, A.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

Tamaru, H.

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Tan, W.-C.

Thiery, L.

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

Trautman, J. K.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Vaccaro, L.

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Van Labeke, D.

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319–323 (2003).
[CrossRef] [PubMed]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Wang, Jia

Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
[CrossRef]

Wanstall, N. P.

Weiner, J. S.

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Xie, X. S.

L. Novotny, E. J. Śnchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Yamaguchi, I.

Appl. Opt. (1)

Appl. Phys. Lett. (7)

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81, 829–831 (2002).
[CrossRef]

L. Vaccaro, L. Aeschimann, U. Staufer, and H. P. Herzig, “Propagation of the electromagnetic field in fully coated near-field optical probes,” Appl. Phys. Lett. 83, 584–586 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Near-field scattering of longitudinal fields,” Appl. Phys. Lett. 82, 4596–4598 (2003).
[CrossRef]

E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Appl. Phys. Lett. 85, 5340–5342 (2004).
[CrossRef]

Tao Hong, Jia Wang, Liqun Sun, and Dacheng Li, “Numerical simulation analysis of a near-field optical virtual probe,” Appl. Phys. Lett. 81, 3452–3454 (2002).
[CrossRef]

T. Okamoto, F. HD́hili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3978–3970 (2004).
[CrossRef]

H. Ditlabacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

J. Appl. Phys. (3)

B. Fisher, T. M. Fisher, and W. Knoll, “Dispersion of surface plasmons in rectangular, sinusoidal and inchoerent silver gratings,” J. Appl. Phys. 75, 1577–1581 (1994).
[CrossRef]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Photonic band gaps in metallic microcavities,” J. Appl. Phys. 84, 2399–2403 (1998).
[CrossRef]

P. André, F. Charra, and M. P. Pileni, “Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate,” J. Appl. Phys. 91, 3028–3036 (2002).
[CrossRef]

J. Microsc. (4)

L. Aeschimann, T. Akiyama, U. Staufer, N. F. de Roij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO_2 tips,” J. Microsc. 209, 182–187 (2003).
[CrossRef] [PubMed]

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hoheanau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro and nano-optics,” J. Microsc. 209, 167–172 (2002).
[CrossRef]

T. Grosjean and D. Courjon, “Immaterial tip concept by light confinement,” J. Microsc. 202, 273–278 (2000).
[CrossRef]

T. Grosjean, D. Courjon, and D. Van Labeke, “Bessel beams as virtual tips for near-field optics,” J. Microsc. 210, 319–323 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

J. Opt. Soc. Am. B (1)

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (4)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6244 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmons on gratings,” Phys. Rev. B 51, 11164–11167 (1995).
[CrossRef]

A. Bouhelier, T. Huser, H. Tamaru, H. J. Güntherodt, D. W. Pohl, Fadi I. Baida, and D. Van Labeke, “Plasmon optics of structured silver films,” Phys. Rev. B 63, 155404-1–155404-9 (2001).
[CrossRef]

Phys. Rev. E (1)

D. C. Skigin and R. A. Depine, “Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings,” Phys. Rev. E 63, 046608-1–046608-10 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full Photonic Band Gap for Surface Modes in the Visible,” Phys. Rev. Lett. 77, 1670–2673 (1996).
[CrossRef]

S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M.W. Skovgaard, and J. M. Hvam, “Waveguiding in Surface Plasmon Polariton Band Gap Structures,” Phys. Rev. Lett. 86, 3008–3011 (2001).
[CrossRef] [PubMed]

Pure Appl. Opt. (1)

L. Li, G. Granet, J. P. Plumey, and J. Chandezon, “Some topics in extending the C method to multilayer gratings of different profiles,” Pure Appl. Opt. 5, 141–156 (1996).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef] [PubMed]

Ultramicroscopy (1)

L. Novotny, E. J. Śnchez, and X. S. Xie, “Near-field imaging using metal tips illuminated by higher-order Hermite-Gaussian beams,” Ultramicroscopy 71, 21–29 (1998).
[CrossRef]

Other (1)

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A, in press

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Excitation of Surface Plasmon Polaritons in the Kretschmann-Raether configuration. Light incident at angle θ with respect to the surface normal, hits the silver film deposited on the flat surface of a cylindrical glass lens and is then reflected. The reflected light is used to monitor the coupling of photons with plasmon polaritons at the metal interface.

Fig. 2.
Fig. 2.

Calculated map of the reflection coefficient R(λ, θ) of a flat thin silver film (t = 50 nm) illuminated in the Kretschmann-Raether configuration at different wavelengths λ and incidence angles θ. Dark zones (low reflectivity) correspond to the excitation of SPP.

Fig. 3.
Fig. 3.

Calculated map of the reflection coefficient R(λ, θ) of a thin silver film illuminated in the Kretschmann-Raether configuration at different wavelengths λ and incidence angles θ. The metal-air interface is corrugated with a sinusoidal profile of period Λ = 220 nm. A band gap at λ ≈ 470 nm emerges due to the presence of the corrugation.

Fig. 4.
Fig. 4.

Topographic profiles of two possible configurations of the cavity. In case (a) the modulation is a raised profile on the surface of the metal layer, while in case (b) it is etched into the layer.

Fig. 5.
Fig. 5.

Convergence of the field enhancement factor as a function of the number of DBR periods at each side of the flat region considered in the calculations.

Fig. 6.
Fig. 6.

Reflection (R) and transmission (T) coefficients of a DFS for SPP for different lengths of the flat region. The two plots show a typical resonance profile.

Fig. 7.
Fig. 7.

Squared amplitude of the magnetic field associated with the plasmonic zero-order mode excited in the two considered DFS configurations: (a) raised profile, (b) etched profile.

Fig. 8.
Fig. 8.

Virtual probe excited in a cavity surrounded by a modified DBR (see inset for a detail). The squared amplitude of the magnetic field of the virtual probe is enhanced by a factor of 94 with respect to the incident plane wave. The effect of the overetched modulation is to reduce the intensity of the lateral lobes.

Fig. 9.
Fig. 9.

A glass plate with a small defect is scanned by the virtual probe. The sample introduces a strong perturbation in the neighborhood of the metal surface that gives rise to a dramatic loss in the photon-plasmon coupling efficiency.

Fig. 10.
Fig. 10.

(a) Reflection coefficient R and (b) transmission coefficient T calculated for different positions of the defect in the glass plate during the scan.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = i η i r , T = i η i t .
Re { k } L ~ ( 2 n + 1 ) π 2
f ( x ) = { h exp [ ( x + w Δ ) 2 s 2 ] x < w h w x w h exp [ ( x - w Δ ) 2 s 2 ] x > w

Metrics