The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]
I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles
viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]
S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]
P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]
Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref]
[PubMed]
J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]
S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref]
[PubMed]
P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]
J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]
E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]
A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]
Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref]
[PubMed]
Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref]
[PubMed]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref]
[PubMed]
The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]
P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]
P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]
I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles
viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref]
[PubMed]
J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268–282 (2001).
[Crossref]
J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]
J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]
E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]
S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]
S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref]
[PubMed]
S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]
The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]
The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]
S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]
Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref]
[PubMed]
The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]
E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]
P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]
P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]
I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles
viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]
J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]
I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles
viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref]
[PubMed]
J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]
S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref]
[PubMed]
S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref]
[PubMed]
E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]
S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref]
[PubMed]
E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).
[Crossref]
S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).
[Crossref]
E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).
[Crossref]
P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]
P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).
[Crossref]
E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).
[Crossref]
The peer-review process made us aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due to form birefringence.
[Crossref]
S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[Crossref]
[PubMed]
M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]
J. Glückstad, “Phase contrast image synthesis,” Opt. Commun. 130, 225–230 (1996).
[Crossref]
I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles
viewed in two orthogonal observation planes,” Opt. Express 18, 2852–2857 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2852.
[Crossref]
P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).
[Crossref]
[PubMed]
A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical
trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref]
[PubMed]
A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]
Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[Crossref]
[PubMed]
J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.