Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Impact of fiber design on polarization dependence in microbend gratings

Open Access Open Access

Abstract

Polarization dependence in microbend gratings is an inherent problem. We formulate simple analytical expressions to describe it, and demonstrate their effectiveness via a comparison with experimental results on a standard transmission fiber. The ability to control polarization dependence with fiber design potentially enables replacing UV-LPGs within low-cost, tunable microbend gratings.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Lifting polarization degeneracy of modes by fiber design: a platform for polarization-insensitive microbend fiber gratings

S. Ramachandran, S. Golowich, M. F. Yan, E. Monberg, F. V. Dimarcello, J. Fleming, S. Ghalmi, and P. Wisk
Opt. Lett. 30(21) 2864-2866 (2005)

Compensation of polarization-dependent loss in transmission fiber gratings by use of a Sagnac loop interferometer

Chang-Seok Kim, Bernard Choi, J. Stuart Nelson, Qun Li, Pedram Zare Dashti, and H. P. Lee
Opt. Lett. 30(1) 20-22 (2005)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Measurements of transmitted power as a function of wavelength, for two orthogonal input SOPs. The fiber under test is TWRS™.
Fig. 2.
Fig. 2. (a) Phase matching curves. The lines denote the predictions from theory; the symbols are the experimentally measured values. (b)Polarization splitting: δλ ℓ,m is the maximal difference in resonance wavelength between the fundamental and LP ℓm modes obtained by varying the input polarization.
Fig. 3.
Fig. 3. (a) Fiber index profile plotted along with radial mode fields for the LP12 to LP15 modes; (b) index profile near the cladding-coating boundary, again with mode fields.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

δλ = β 12 β ˙ 20 λ = λ 0 .
E t x t z t = e i ( βz ωt ) e t ( x t )
( t 2 k 2 n 2 + V ( vect ) + β 2 ) e t = 0
V ( vect ) e t = t ( e t · t ln n 2 ) .
n 2 ( x t ) = n 0 2 ( r ) + n ell 2 r θ
n 0 2 ( r ) = n co 2 ( 1 2 Δ f ( r ) )
n ell 2 ( r , θ ) = c ell r cos ( 2 θ ) f ( r )
c ell = 1 2 e 2 Δ n co 2
( t 2 k 2 n 0 2 + V ( ell ) + V ( vect ) + β 2 ) e t = 0
( t 2 + k 2 n 0 2 β 2 ) e t = 0 .
φ , m , ν , p ̂ r θ = F , m ( r ) ν ( ℓθ ) p ̂ ,
F , m 1 r F , m + ( 2 r 2 k 2 n 0 2 ) F , m = β 2 F , m .
I 1 = rdrdθF ( r ) F ( r ) f ( r )
I 2 ( ) = rdrdθ 1 r F ( r ) 2 f ( r )
I 3 = rdrdθrF ( r ) 2 f ( r ) .
= 1 , m , · , · V ( ell ) = 1 , m , · , · = π 2 k 2 c ell I 3 ( 1 1 1 1 ) .
= 0 , m , · , · V ( vect ) = 0 , m , · , · = 2 Δπ ( I 1 I 1 )
= 0 , m , · , · V ( vect ) = 0 , m , · , · =
2 Δ π 4 ( 3 I 1 + I 2 ( 1 ) I 1 + 3 I 2 ( 1 ) I 1 I 2 ( 1 ) I 1 I 2 ( 1 ) I 1 I 2 ( 1 ) I 1 I 2 ( 1 ) I 1 + 3 I 2 ( 1 ) 3 I 1 + I 1 ( 1 ) )
> 1 , m , · , · V ( vect ) > 1 , m , · , · = 2 Δ π 4 ( I 1 I 2 ( ) I 1 I 2 ( ) I 2 ( ) I 1 I 2 ( ) I 1 ) .
δ β TE 2 = 0 e t ( TE ) = 1 , m , sin , x ̂ + 1 , m , cos , y ̂
δ β TM 2 = 2 πΔ ( I 1 + I 2 ( 1 ) ) e t ( TM ) = 1 , m , cos , x ̂ + 1 , m , sin , y ̂
δ β HE 2 = πΔ ( I 1 I 2 ( 1 ) ) e t ( HE ) = 1 , m , cos , x ̂ - 1 , m , sin , y ̂ ,
1 , m , sin , x ̂ + 1 , m , cos , y ̂ .
n gr 2 x t z r cos ( θ θ 0 ) cos ( 2 π Λ z )
da 0 dz = iK 0,1 e iαz a 1
da 1 dz = iK 1,0 e iαz a 0 ,
K i , j = κ rdrdθ e t ( i ) r cos ( θ θ 0 ) e t ( j ) .
a 1 ( L ) 2 = ( 1 + x ) 1 sin 2 ( π 2 ( 1 + x ) 1 2 )
x = L 2 π 2 ( β 01 β Λ ) 2 .
δλ ( ε ) π L β ˙ 01 ( 0 ) ε ,
β ˙ 01 ( 0 ) = 01 λ = λ 0 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.