A.D. Klose, V. Ntziachristos, and A.H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]
J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22, 546–551 (2005).
[Crossref]
M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[Crossref]
[PubMed]
G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289–2299 (2004).
[Crossref]
[PubMed]
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
X. Gu,, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express 12, 3996–4000 (2004).
[Crossref]
R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with non-contact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).
[Crossref]
M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt. 9, 1336–1346 (2004).
[Crossref]
[PubMed]
P. Ray, A.M. Wu, and S.S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160–1165 (2003).
[PubMed]
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
S. Bhaumik and S. S. Gambhir, “Optical imaging of Renilla luciferase reporter gene expression in living mice,” Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).
[Crossref]
C. Contag and M. H. Bachmann, “Advances in Bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
[Crossref]
[PubMed]
V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref]
[PubMed]
W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432–440 (2001).
[Crossref]
[PubMed]
M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]
[PubMed]
M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
C. Contag and M. H. Bachmann, “Advances in Bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
[Crossref]
[PubMed]
S. Bhaumik and S. S. Gambhir, “Optical imaging of Renilla luciferase reporter gene expression in living mice,” Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).
[Crossref]
V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref]
[PubMed]
S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Elements (Springer, Berlin-Heidelberg-New York,1994).
W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432–440 (2001).
[Crossref]
[PubMed]
M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[Crossref]
[PubMed]
T. Chen, “Digital Camera System Simulator and applications,” Ph. D. Thesis, Stanford University (2003).
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
C. Contag and M. H. Bachmann, “Advances in Bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
[Crossref]
[PubMed]
M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor analysis ( Wiley, New York,1976).
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]
[PubMed]
S. Bhaumik and S. S. Gambhir, “Optical imaging of Renilla luciferase reporter gene expression in living mice,” Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).
[Crossref]
P. Ray, A.M. Wu, and S.S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160–1165 (2003).
[PubMed]
J. Welch and M. J. C. van Gemert, Optical and Thermal response of laser-irradiated tissue (Plenum Press, New York,1995).
P. E. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, New York, 1981).
M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt. 9, 1336–1346 (2004).
[Crossref]
[PubMed]
M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[Crossref]
[PubMed]
J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor analysis ( Wiley, New York,1976).
A.D. Klose, V. Ntziachristos, and A.H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]
M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
S. Holder, Electrical Impedance Tomography (Institute of Physics Publishing, Bristol and Philadelphia,2005).
M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[Crossref]
[PubMed]
G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289–2299 (2004).
[Crossref]
[PubMed]
A.D. Klose, V. Ntziachristos, and A.H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289–2299 (2004).
[Crossref]
[PubMed]
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
P. E. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, New York, 1981).
W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432–440 (2001).
[Crossref]
[PubMed]
A.D. Klose, V. Ntziachristos, and A.H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]
J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22, 546–551 (2005).
[Crossref]
R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with non-contact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).
[Crossref]
V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref]
[PubMed]
M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt. 9, 1336–1346 (2004).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]
[PubMed]
S. S. Rao, The finite element method in engineering (Butterworth-Heinemann, Boston,1999).
P. Ray, A.M. Wu, and S.S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160–1165 (2003).
[PubMed]
W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432–440 (2001).
[Crossref]
[PubMed]
J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22, 546–551 (2005).
[Crossref]
R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with non-contact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).
[Crossref]
R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with non-contact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).
[Crossref]
M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Elements (Springer, Berlin-Heidelberg-New York,1994).
M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt. 9, 1336–1346 (2004).
[Crossref]
[PubMed]
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref]
[PubMed]
G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289–2299 (2004).
[Crossref]
[PubMed]
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref]
[PubMed]
J. Welch and M. J. C. van Gemert, Optical and Thermal response of laser-irradiated tissue (Plenum Press, New York,1995).
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]
[PubMed]
P. E. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, New York, 1981).
P. Ray, A.M. Wu, and S.S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160–1165 (2003).
[PubMed]
M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[Crossref]
[PubMed]
C. Contag and M. H. Bachmann, “Advances in Bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng. 4, 235–260 (2002).
[Crossref]
[PubMed]
P. Ray, A.M. Wu, and S.S. Gambhir, “Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice,” Cancer Res. 63, 1160–1165 (2003).
[PubMed]
R. Schultz, J. Ripoll, and V. Ntziachristos, “Experimental fluorescence tomography of tissues with non-contact measurements,” IEEE Trans. Med. Imag. 23, 492–500 (2004).
[Crossref]
W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6, 432–440 (2001).
[Crossref]
[PubMed]
M. Gurfinkel, T. S. Pan, and E. M. Sevick-Muraca, “Determination of optical properties in semi-infinite turbid media using imaging measurements of frequency-domain photon migration obtained with an intensified charge-coupled device,” J. Biomed. Opt. 9, 1336–1346 (2004).
[Crossref]
[PubMed]
A.D. Klose, V. Ntziachristos, and A.H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).
[Crossref]
J. Ripoll, D. Yessayan, G. Zacharakis, and V. Ntziachristos, “Experimental determination of photon propagation in highly absorbing and scattering media,” J. Opt. Soc. Am. A 22, 546–551 (2005).
[Crossref]
J. C. Ye, K. J. Webb, C. A. Bouman, and R. P. Millane, “Optical diffusion tomography by iterative-coordinate-descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999).
[Crossref]
M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).
[Crossref]
[PubMed]
T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref]
[PubMed]
G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31, 2289–2299 (2004).
[Crossref]
[PubMed]
S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[Crossref]
[PubMed]
V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[Crossref]
[PubMed]
M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50, 2837–2858 (2005).
[Crossref]
[PubMed]
S. Bhaumik and S. S. Gambhir, “Optical imaging of Renilla luciferase reporter gene expression in living mice,” Proc. Natl. Acad. Sci. USA 99, 377–382 (2002).
[Crossref]
W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, “A practical method to determine the light source distribution in bioluminescent imaging,” Proc. SPIE 5535, 679–686 (2004).
[Crossref]
G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. Meinel, “Development of the first bioluminescent CT scanner,” Radiology 229(P), 566 (2003).
J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor analysis ( Wiley, New York,1976).
J. Welch and M. J. C. van Gemert, Optical and Thermal response of laser-irradiated tissue (Plenum Press, New York,1995).
S. S. Rao, The finite element method in engineering (Butterworth-Heinemann, Boston,1999).
S. C. Brenner and R. L. Scott, The Mathematical Theory of Finite Elements (Springer, Berlin-Heidelberg-New York,1994).
P. E. Gill, W. Murray, and M. Wright, Practical Optimization (Academic Press, New York, 1981).
T. Chen, “Digital Camera System Simulator and applications,” Ph. D. Thesis, Stanford University (2003).
S. Holder, Electrical Impedance Tomography (Institute of Physics Publishing, Bristol and Philadelphia,2005).