Abstract

We describe an experiment in which photon pairs from a pulsed parametric down-conversion (PDC) source were coupled into single-mode fibers with heralding efficiencies as high as 70%. Heralding efficiency or mode preparation efficiency is defined as the probability of finding a photon in a fiber in a definite state, given the detection of its twin. Heralding efficiencies were obtained for a range of down-conversion beam-size configurations. Analysis of spatial and spectral mode selection, and their mutual correlation, provides a practical guide for engineering PDC-produced single photons in a definite mode and spectral emission band. The spectrum of the heralded photons were measured for each beam configuration, to determine the interplay between transverse momentum and spectral entanglement on the preparation efficiency.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Intercomparison of a correlated-photon-based method to measure detector quantum efficiency

Alan Migdall, Stefania Castelletto, Ivo Pietro Degiovanni, and Maria Luisa Rastello
Appl. Opt. 41(15) 2914-2922 (2002)

High accuracy verification of a correlated-photon-based method for determining photon-counting detection efficiency

Sergey V. Polyakov and Alan L. Migdall
Opt. Express 15(4) 1390-1407 (2007)

Narrowband polarization-entangled photon pairs distributed over a WDM link for qubit networks

S. Sauge, M. Swillo, S. Albert-Seifried, G. B. Xavier, J. Waldebäck, M. Tengner, D. Ljunggren, and A. Karlsson
Opt. Express 15(11) 6926-6933 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach Science Publishers, 1988).
  2. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [Crossref]
  3. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
    [Crossref] [PubMed]
  4. A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
    [Crossref] [PubMed]
  5. A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Towards an intercomparison of a correlated photon based method to measure detector quantum efficiency,” Appl. Opt. 41, 2914–2922 (2002).
    [Crossref] [PubMed]
  6. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
    [Crossref] [PubMed]
  7. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  8. M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
    [Crossref]
  9. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
    [Crossref]
  10. S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
    [Crossref]
  11. C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
    [Crossref]
  12. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
    [Crossref]
  13. C. H. Monken, P. H. Souto Ribeiro, and S. Padua, “Optimizing the photon pair collection efficiency: A step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
    [Crossref]
  14. S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
    [Crossref]
  15. S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
    [Crossref]
  16. A. Dragan, “Efficient fiber coupling of down-conversion photon pairs,” Phys. Rev. A 70, 053814 (2004).
    [Crossref]
  17. T. B. Pittmann, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246, 545–550 (2005).
    [Crossref]
  18. D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
    [Crossref]
  19. The fiber-coupled bandwidth in this Type-I PDC experiment is significantly larger than that of the Type-II PDC setup in reference [11].
  20. Calculation according to the NIST program on the web page http://physics.nist.gov/Divisions/Div844/facilities/cprad/cprad.html
  21. M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
    [Crossref] [PubMed]
  22. We calibrated the detector efficiency by using a mulitmode fiber in the same configuration of coupling lenses used with the single mode fiber after testing that the CUT collected all the correlated photons.
  23. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
    [Crossref]

2005 (2)

T. B. Pittmann, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246, 545–550 (2005).
[Crossref]

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

2004 (3)

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
[Crossref]

A. Dragan, “Efficient fiber coupling of down-conversion photon pairs,” Phys. Rev. A 70, 053814 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

2003 (2)

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
[Crossref]

2002 (1)

2001 (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

2000 (2)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
[Crossref] [PubMed]

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

1998 (1)

C. H. Monken, P. H. Souto Ribeiro, and S. Padua, “Optimizing the photon pair collection efficiency: A step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[Crossref]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

1996 (1)

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
[Crossref] [PubMed]

1995 (1)

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

1986 (1)

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Aichele, T.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Benson, O.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Boeuf, N.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Bovino, F. A.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

Branning, D.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
[Crossref] [PubMed]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Castagnoli, G.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

Castelletto, S.

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
[Crossref]

A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Towards an intercomparison of a correlated photon based method to measure detector quantum efficiency,” Appl. Opt. 41, 2914–2922 (2002).
[Crossref] [PubMed]

Chaperot, I.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Colla, A. M.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

Dauler, E.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Degiovanni, I. P.

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
[Crossref]

A. L. Migdall, S. Castelletto, I. P. Degiovanni, and M. L. Rastello, “Towards an intercomparison of a correlated photon based method to measure detector quantum efficiency,” Appl. Opt. 41, 2914–2922 (2002).
[Crossref] [PubMed]

Dragan, A.

A. Dragan, “Efficient fiber coupling of down-conversion photon pairs,” Phys. Rev. A 70, 053814 (2004).
[Crossref]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Franson, J. D.

T. B. Pittmann, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246, 545–550 (2005).
[Crossref]

Gisin, N.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
[Crossref] [PubMed]

Giuseppe, G. Di

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

Guerin, S.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Hansen, H.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

Jacobs, B. C.

T. B. Pittmann, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246, 545–550 (2005).
[Crossref]

Jaeger, G.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Klyshko, D. N.

D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach Science Publishers, 1988).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Lita, A. E.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Migdall, A.

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
[Crossref]

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Migdall, A. L.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Miller, A. J.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

Mlynek, J.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Monken, C. H.

C. H. Monken, P. H. Souto Ribeiro, and S. Padua, “Optimizing the photon pair collection efficiency: A step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[Crossref]

Muller, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Nam, S.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

Oberparlieter, M.

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

Padua, S.

C. H. Monken, P. H. Souto Ribeiro, and S. Padua, “Optimizing the photon pair collection efficiency: A step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[Crossref]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

Pittmann, T. B.

T. B. Pittmann, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246, 545–550 (2005).
[Crossref]

Rarity, J. G.

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

Rastello, M. L.

Rosenberg, D.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

Rubin, M. H.

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
[Crossref] [PubMed]

Schettini, V.

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

Schiller, S.

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Schwall, R. E.

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

Sergienko, A. V.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

Souto Ribeiro, P. H.

C. H. Monken, P. H. Souto Ribeiro, and S. Padua, “Optimizing the photon pair collection efficiency: A step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[Crossref]

Tittel, W.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
[Crossref] [PubMed]

Varisco, P.

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

Ware, M.

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
[Crossref]

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
[Crossref]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Weinfurter, H.

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

Zbinden, H.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
[Crossref] [PubMed]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

Zukowski, M.

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

Ann. N.Y. Acad. Sci. (1)

M. Zukowski, A. Zeilinger, and H. Weinfurter,“Entangling photons radiated by independent pulsed sources,” Ann. N.Y. Acad. Sci. 755, 91 (1995). J. G. Rarity, “Interference of single photons from separate sources,” Ann. N.Y. Acad. Sci. 755, 624 (1995).
[Crossref]

Appl. Opt. (1)

IEEE Trans. Appl. Supercond. (1)

D. Rosenberg, A. E. Lita, A. J. Miller, S. Nam, and R. E. Schwall,“Performance of photon-number resolving transition-edge sensors with integrated 1550 nm resonant cavities,” IEEE Trans. Appl. Supercond. 15, 575–578 (2005).
[Crossref]

Nature (2)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

New J. of Phys. (1)

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “On the measurement of two-photon single mode coupling efficiency in PDC photon sources,” New J. of Phys. 6, 87 (2004).
[Crossref]

Opt. Commun. (2)

F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. Di Giuseppe, and A. V. Sergienko, “Effective fiber-coupling of entangled photons for quantum communication,” Opt. Commun. 227, 343–348 (2003).
[Crossref]

T. B. Pittmann, B. C. Jacobs, and J. D. Franson, “Heralding single photons from pulsed parametric down-conversion,” Opt. Commun. 246, 545–550 (2005).
[Crossref]

Opt. Eng. (1)

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39, 1016–1024 (2000).
[Crossref]

Phys. Rev. A (4)

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
[Crossref] [PubMed]

C. Kurtsiefer, M. Oberparlieter, and H. Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[Crossref]

C. H. Monken, P. H. Souto Ribeiro, and S. Padua, “Optimizing the photon pair collection efficiency: A step toward a loophole-free Bell’s inequalities experiment,” Phys. Rev. A 57, R2267–R2269 (1998).
[Crossref]

A. Dragan, “Efficient fiber coupling of down-conversion photon pairs,” Phys. Rev. A 70, 053814 (2004).
[Crossref]

Phys. Rev. Lett. (4)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin,“Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84, 4737–40 (2000).
[Crossref] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58–60 (1986).
[Crossref] [PubMed]

A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum State Reconstruction of the Single-Photon Fock State,” Phys. Rev. Lett. 87, 050402 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

S. Castelletto, I. P. Degiovanni, M. Ware, and A. Migdall, “Coupling efficiencies in single photon on-demand sources,”in“Quantum Communications and Quantum Imaging” R. E. Meyers and Y. H. Shih, eds., Proc. SPIE 5161, 48–56 (2003).
[Crossref]

SPIE Proc. (1)

S. Castelletto, I. P. Degiovanni, V. Schettini, M. Ware, and A. Migdall, “Measurement of coupling PDC photon source with single-mode and multi-mode optical fibers,” in “Quantum Communications and Quantum Imaging,” R. E. Meyers and Y. H. Shih, eds., SPIE Proc. 5551, 60–72 (2004).
[Crossref]

Other (4)

D. N. Klyshko, Photons and Nonlinear Optics, (Gordon and Breach Science Publishers, 1988).

The fiber-coupled bandwidth in this Type-I PDC experiment is significantly larger than that of the Type-II PDC setup in reference [11].

Calculation according to the NIST program on the web page http://physics.nist.gov/Divisions/Div844/facilities/cprad/cprad.html

We calibrated the detector efficiency by using a mulitmode fiber in the same configuration of coupling lenses used with the single mode fiber after testing that the CUT collected all the correlated photons.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup used to herald single-photons from pulsed parametric down-conversion (PDC). Filters F1,2, either cut-off or interference and various lenses L1,2 are used, according to Table I. Distances d1,2 were chosen for practical reasons, and the direction 1 was the heralding channel except for lens configuration (b). A monochromator was inserted in the heralding channel fiber link to measure coincidence spectral distribution

Fig. 2.
Fig. 2.

(a) Calculated external angular PDC emission of LiIO3 at a phase-matching angle of 44.15°, including the longitudinal mismatch and the pump transverse shape (gaussian with a 260 μm pump waist, crystal length L=5 mm). The black line is the central emission angle of PDC for the experimental condition, for a 395 nm CW pump beam, is superimposed. This calculation was done according to ref. [23], and the normalized phasematch function (perfect phasematch =1) is used. (b) Vertical slice of (a) at a wavelength of 789 nm.

Fig. 3.
Fig. 3.

Spectral scan of the normalized coincidence rates performed with a monochromator in the heralding fiber path. Solid lines are theoretical curves of Eq. (19). Lens configurations (a), (b) and (c). The narrower scans were taken with a 5 nm FWHM interference filter on the heralding arm.

Fig. 4.
Fig. 4.

Spectral scan coincidence for various iris diameters on the CUT arm. Data (squares for the full aperture, diamonds at 1.5 mm iris diameter, and down triangles for 1 mm iris diameter) are compared to the theoretical prediction.

Fig. 5.
Fig. 5.

Theoretical prediction of the mode preparation efficiency versus the trigger bandwidth for various lens magnifications. Lens magnification is given by M 1,2 = d 1,2 f 1,2 f 1,2 . Calculations are done for w o,1 = w o,2 = w o = Mw f and a crystal 5 mm long. Solid lines are for for fixed w p = 260 μm and dotted line for w p = 3 w o .

Fig. 6.
Fig. 6.

Transverse intensity profile of the heralded PDC photon by a fixed heralding single direction and wavelength, calculated exactly (a) and with the present approximation (b).

Tables (2)

Tables Icon

Table 1. Details of lens configurations for coupling fiber mode diameter of 4.2 μm, and M are magnifications.

Tables Icon

Table 2. Angular spread collection and resulting χ P’s for each lens configuration

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

Δ 1,2 = Δ θ 1,2 [ θ o ( λ ) λ λ o ] 1 ,
ψ = χ ( 2 ) d t V d x d y d z E p ( x , y , z , t ) E ̂ s ( ) ( x , y , z , t ) E ̂ i ( ) ( x , y , z , t ) 0 k s , ω s 0 k i , ω i .
E p ( x , y , z , t ) = d 3 k p d ω p E ̃ q p ( q p ) E ̃ ν p ( ω p ) e i k p · r i ω p t ,
ψ = d 3 k s d ω s d 3 k i d ω i A ̃ 12 ( k s , k i , ω i , ω s ) 1 k s , ω s 1 k i , ω i ,
A ̃ 12 ( k s , k i , ω i , ω s ) d 3 k p d ω p S d x d y L 0 d z E ̃ q p ( q p ) E ̃ ν p ( ω p ) e i ( Δ k x x + Δ k y y + Δ k z z )
× δ ( ω s + ω i ω p )
× δ [ k p z ( n ( ω p ) ω p c ) 2 q p 2 ]
× δ [ k s z ( n ( ω s ) ω s c ) 2 q s 2 ]
× δ [ k i z ( n ( ω i ) ω i c ) 2 q i 2 ] ,
k p z = ( n ( ω p ) ω p c ) 2 q p 2 ,
Δ k x = q p x q s x q i x
Δ k y = q p y q s y q i y θ i K i θ s K s
Δ k z = D pi v p + D is ν s + ( N p N s ) q p y K p + θ sq s y θ iq i y ,
A 12 ( ρ 1 , ρ 2 , t , τ ) E ν p ( τ t + 2 τ D pi D is 2 ) E q p ( x 1 , y 1 N p , s τ K p D is )
δ ( x 1 x 2 ) × δ ( y 1 y 2 + α s τ D is ) D is L ( τ ) ,
φ j * ( x j , y j ) = 2 π 1 w o , j exp [ x j 2 + y j 2 w o , j 2 ] ,
A 12 ( t , τ ) = d ρ 1 d ρ 2 A 12 ( ρ 1 , ρ 2 , t , τ ) φ 1 * ( ρ 1 ) φ 2 * ( ρ 2 ) .
C 12 = d t d t d τ d τ A 12 ( t , τ ) A 12 * ( t , τ ) φ 1 * I ν s ( t t + τ τ ) I ν i ( t t τ + τ ) .
A 12 ( t , τ , ρ 2 ) = d ρ 1 A 12 ( ρ 1 , ρ 2 , t , τ ) φ 1 * ( ρ 1 )
C 1 = d ρ 2 d t d t d τ d τ A 12 ( t , τ , ρ 2 ) A 12 * ( t , τ , ρ 2 ) φ 1 * I ν s ( t t + τ τ ) .
χ P = C 12 C 1 .
χ P = 4 T p w o , 1 2 w o , 2 2 w p 2 ( w o , 1 2 + w p 2 ) Δ 2 ( w o , 2 2 w p 2 + w o . 1 2 ( w o , 2 2 + w p 2 ) ) 2 8 a 6 + T p 2 ( Δ 1 2 + Δ 2 2 ) f ( c 1 , c 2 ) f ( s 1 , s 2 ) ,
f ( p , q ) = 0 1 d x e p x 2 + q 2 x 2 4 p ( Erf [ qx 2 p ] Erf [ 2 p + qx 2 p ] ) p .
c 1 = L 2 [ w o , 2 2 α 2 + w o , 1 2 ( α 2 + K p 2 D pi 2 w o , 2 2 ( Δ 1 2 + Δ 2 2 ) ) ] K p 2 [ w o , 2 2 w p 2 + w o . 1 2 ( w o , 2 2 + w p 2 ) ] [ a 2 + a 2 T p 2 ( Δ 1 2 + Δ 2 2 ) ]
α = a 2 N s , p 2 + [ a 2 N s , p 2 T p 2 + K p 2 D pi 2 w p 2 ( Δ 1 2 + Δ 2 2 ) ]
c 2 = 2 L 2 D pi 2 ( Δ 1 2 + Δ 2 2 ) a 2 + a 2 T p 2 ( Δ 1 2 + Δ 2 2 )
s 1 = L 2 [ 2 a 2 N s , p 2 T p 2 ( w o , 1 2 + 2 w p 2 ) + K p 2 D pi 2 w p 2 ( w o , 1 2 + w o , 2 2 ) ] 2 a 2 K p 2 T p 2 w p 2 ( w o , 1 2 + w p 2 )
s 2 = L 2 [ 2 a 2 N s , p 2 T p 2 w o , 1 2 + K p 2 D pi 2 w p 2 ( w o , 1 2 + w o , 2 2 ) ] 2 a 2 K p 2 T p 2 w p 2 ( w o , 1 2 + w p 2 ) .
A 12 ( ρ 1 , ρ 2 , ν s , ν i ) E ̃ ν p ( ν s + ν i ) E q p ( x 1 , y 1 + ( y 1 y 2 ) N s , p K p α s ) ) ×
exp [ I ( y 1 y 2 ) ( ν s D is + ( ν i + ν s ) D pi ) α s ] δ ( x 1 x 2 ) L ( y 1 y 2 α s ) ,
A 12 ( ν s , ν i ) = d ρ 1 d ρ 2 A 12 ( ρ 1 , ρ 2 , ν s , ν i ) φ 1 * ( ρ 1 ) φ 2 * ( ρ 2 ) .
C 12 ( ν i ) = d ν s A 12 ( ν s , ν i ) 2 I ̃ ν i ( ν i ) I ̃ ν s ( ν s ) = d ν s C 12 ( ν i , ν s ) .
C 12 ( ν i , ν s ) E ̃ ν p [ ( ν s + ν i ) ] ( 1 + 8 a 2 ζ 2 T p 2 ) 1 2 ] 2 I ̃ ν i ( ν i ) I ̃ ν s ( ν s ) ×
Erf [ γ + ζ ( ν s + ν i ) ] Erf [ ζ ( ν s + ν i ) ] 2 ,
ζ = K p D pi w o , 2 2 w p 2 + w o , 1 2 ( w o , 2 2 + w p 2 ) 2 N s , p ( w o , 1 2 + w o , 2 2 ) ,
γ = L w p 2 + w o , 2 2 w p 2 w o , 2 2 + w o , 1 2 ( w p 2 + w o , 2 2 ) N s , p K p .

Metrics