Abstract

We describe a procedure for rapidly and conveniently prototyping a periodic structure at submicrometer order using holographic interferometry and micro-molding processes. In this experiment, the master of the periodic structure was created on an i-line submicrometer positive photoresist film by a holographic interference using a He-Cd (325nm) laser. A subsequent mold using polydimethylsiloxane (PDMS) polymer was cast against this master and used as a stamp to transfer the grating pattern onto a UV cure epoxy. The technique shows accurate control for the transferring of a grating’s period and depth. The grating pattern on the epoxy produced by the PDMS mold shows an average of less than 2% error in the grating period and an average of 15% error in depth reproduction.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
    [CrossRef]
  2. H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
    [CrossRef]
  3. C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
    [CrossRef]
  4. Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
    [CrossRef]
  5. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
    [CrossRef]
  6. S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
    [CrossRef]
  7. W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.
  8. D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  9. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
    [CrossRef]
  10. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
    [CrossRef]
  11. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).
  12. C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
    [CrossRef]
  13. N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
    [CrossRef]
  14. L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
    [CrossRef]
  15. K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
    [CrossRef]
  16. D. J. Kang, J. K. Kim, and B. S. Bae, “Simple fabrication of diffraction gratings by two beam interference method in highly photosensitivity hybrid sol-gel films,” Opt. Express 12, 3947–3953 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-3947.
    [CrossRef] [PubMed]
  17. Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
    [CrossRef]
  18. P. M. Ferm and L. W. Shackjette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear, Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
    [CrossRef]
  19. K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
    [CrossRef]
  20. X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
    [CrossRef]
  21. H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
    [CrossRef]
  22. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
    [CrossRef]
  23. P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
    [CrossRef]
  24. M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
    [CrossRef]

2005 (1)

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

2004 (1)

2003 (2)

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[CrossRef]

2000 (2)

P. M. Ferm and L. W. Shackjette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear, Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[CrossRef]

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

1998 (4)

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[CrossRef]

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[CrossRef]

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

1997 (3)

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[CrossRef]

1996 (3)

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[CrossRef]

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

1995 (3)

D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

1993 (2)

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

1992 (1)

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[CrossRef]

1985 (1)

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
[CrossRef]

1980 (1)

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Aizenberg, J.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

Albert, J.

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Assanto, G.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Bae, B. S.

Bauer, H. D.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Becker, Holger

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[CrossRef]

Bergveld, P.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[CrossRef]

Bilodeau, D.

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Blomquist, R.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

Breen, T. L.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

Burkhard, H.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

Chang, Y.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

Chao, C. Y.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

Chao, C.K.

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Chen, C. Y.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

Chuang, W.C.

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Dietz, Wolfram

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[CrossRef]

Eapen, B.J.

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

Ehrfeld, W.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Eldada, L.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

Ferm, P. M.

P. M. Ferm and L. W. Shackjette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear, Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[CrossRef]

Friesem, A. A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Glass, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

Grabmaier, A.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

Handa, Y.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Hansmann, S.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

Harder, M.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Herzig, H. P.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Hillmer, H.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

Ho, C.T.

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Huser, A.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[CrossRef]

Imoto, N.

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Kang, D. J.

Kang, J. W.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Keicher, D.M.

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

Kim, D. Y.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Kim, J. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Kim, J. K.

Kim, J. P.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Kim, M. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Kondo, Y.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[CrossRef]

Koyama, J.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Kumar, J.

D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lee, J. S.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Li, L.

D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lian, Y.R.

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Lin, C. H.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[CrossRef]

Liu, C. W.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

Lo, Y. H.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[CrossRef]

Lotters, J. C.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[CrossRef]

Luong, S.Q.

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

Maciossek, A.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

Marciniak, M.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Marty, B.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[CrossRef]

Mukherjee, A.

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

Mukherjee, N.

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

Nishihara, H.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Norwood, R.A.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[CrossRef]

Oku, S.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[CrossRef]

Olthuis, W.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[CrossRef]

Paatzsch, T.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Paul, K. E.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[CrossRef]

Poga, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

Popp, M.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Prentiss, M.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

P-Smith, S.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

Qian, Y.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[CrossRef]

Rosenblatt, D.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Rossi, M.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[CrossRef]

Rudmanr, H.

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[CrossRef]

Shackjette, L. W.

P. M. Ferm and L. W. Shackjette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear, Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[CrossRef]

Sharon, A.

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Shibata, Y.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[CrossRef]

Shyu, R.F.

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Smaglinski, F.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Suhara, T.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

Tamamura, T.

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[CrossRef]

tripathy, S. K.

D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Veltink, P. H.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[CrossRef]

Waldman, S. J.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

Wang, W.C.

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Whitesides, G. M.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

Wu, S.

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[CrossRef]

Yang, C. C.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

Yin, S.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[CrossRef]

Yoo, S. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Yu, F. T. S.

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[CrossRef]

Zhao, X.-M.

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

Zhu, H. L.

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

Zhu, Z. H.

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[CrossRef]

Appl. Phys. Lett. (8)

D. Y. Kim, S. K. tripathy, L. Li, and J. Kumar, “Laser-induced holographic surface relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

A. Sharon, D. Rosenblatt, and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, “Direct writing of silicon gratings with highly coherent ultraviolet laser,” Appl. Phys. Lett. 71, 2442–2444 (1997).
[CrossRef]

N. Mukherjee, B.J. Eapen, D.M. Keicher, S.Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate”, Appl. Phys. Lett. 67,3715–3717 (1995).
[CrossRef]

K. O. Hill, B. Malo, D. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62, 1035–1037 (1993).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, “Maskless Photolithography: embossed photoresister as its own optical element,” Appl. Phys. Lett. 73, 2893–2895 (1998).
[CrossRef]

X.-M. Zhao, S. P-Smith, S. J. Waldman, G. M. Whitesides, and M. Prentiss, “Demonstration of waveguide couplers fabricated using microtransfer molding,” Appl. Phys. Lett. 71, 1017–1019 (1997).
[CrossRef]

IEEE J. Quantum Electron (1)

C. H. Lin, Z. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade self-induced holography: a new grating fabrication technology for DFB/DBR lasers and WDM laser arrays,” IEEE J. Quantum Electron 32, 1752–1759 (1996).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

Y. Shibata, S. Oku, Y. Kondo, and T. Tamamura, “Effect of sidelobe on demultiplexing characteristics of a grating-folded directional coupler demultiplexer,” IEEE Photonics Technol. Lett. 8, 87–89 (1996).
[CrossRef]

S. Yin, F. T. S. Yu, and S. Wu, “Optical monitoring for plasma-etching depth process,” IEEE Photonics Technol. Lett. 4, 894–896 (1992).
[CrossRef]

IEEE, Photonics Technol. Lett. (1)

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R.A. Norwood, “Integrated multichannel OADMS using polymer Bragg grating MZIS,” IEEE, Photonics Technol. Lett. 10, 1416–1418 (1998).
[CrossRef]

J. Lightwave Technol. (3)

N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3, 895–900 (1985).
[CrossRef]

H. Hillmer, A. Grabmaier, H. L. Zhu, S. Hansmann, and H. Burkhard, “Continuously chirped DFB gratings by specially bent waveguides for tunable lasers,” J. Lightwave Technol. 13, 1905–1912 (1995).
[CrossRef]

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANs-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

J. Micromech. Microeng. (1)

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech. Microeng. 7, 145–147(1997).
[CrossRef]

Opt. Eng. (1)

P. Nussbaum, I. Philipoussis, A. Huser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37, 1804–1808 (1998).
[CrossRef]

Opt. Express (1)

Proc. SPIE (4)

Holger Becker and Wolfram Dietz, “Microfluidic devices for TAS applications fabricated by polymer hot embossing,” in Microfluid Devices and Systems, A. B. Frazier and C. H. Ahn, eds., Proc. SPIE 3515, 177–181 (1998).
[CrossRef]

P. M. Ferm and L. W. Shackjette, “High volume manufacturing of polymer waveguides via UV- Embossing,” in Linear, Nonlinear, and Power-Limiting Organics, E. Manfred, et al., eds., Proc. SPIE 4106, 1–10 (2000).
[CrossRef]

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, “Electron-beam directly written micro gratings for integrated optical circuits,” in Photo- and Electro-Optics in Range Instrumentation, J. Water, et al., eds., Proc. SPIE,  134, 152–159 (1980).

M. Rossi, H. Rudmanr, B. Marty, and A. Maciossek, “Wafer-scale micro-optics replication technology,” in Lithographic and Micromaching Techniques for Optical Component Fabrication II, E.-B. Kley and H.P. Herzid, eds., Proc. SPIE 5183, 148–154 (2003).
[CrossRef]

Synth. Metals (1)

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, “Polymer waveguide devices with passive pigtailing: an application of LIGA technology,” Synth. Metals 115, 13–20 (2000).
[CrossRef]

Other (1)

W.C. Wang, W.C. Chuang, C.T. Ho, Y.R. Lian, C.K. Chao, and R.F. Shyu,“A new novel means of transducing tensile stress,” in Proceedings of Progress in Electromagnetics Research Symposium, Z.A. Kong, ed. (Hangzhou, China, 2005), pp.89–91.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experiment setup for the holographic interferometric grating exposure.

Fig. 2.
Fig. 2.

Grating depth as a function of light exposing time on photoresist. (The combined intensity of two incident beams is 15μW for all experiments.)

Fig. 3.
Fig. 3.

The AFM picture and measurement result for the grating on photoresist (a) 500 nm grating period and (b) 700 nm grating period.

Fig. 4.
Fig. 4.

The AFM micrograph of gratings on PDMS mold (490 nm grating period).

Fig. 5.
Fig. 5.

Schematic illustration of the polymer grating fabrication by a PDMS mold.

Fig. 6.
Fig. 6.

The SEM micrograph of gratings on PDMS (500 nm grating period). Some fins are stuck together as shown in the figure.

Fig. 7.
Fig. 7.

The SEM micrograph of gratings on UV polymer (700 nm grating period).

Tables (1)

Tables Icon

Table 1. The results of gratings from the SEM and AFM measurement on photoresist (PR), PDMS, and UV polymers.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T = λ sin θ 1 + sin θ 2 ,
Δ T T = cos θ 1 sin θ 2 + sin θ 1 × Δ θ 1 ,

Metrics