Abstract

We demonstrate a significant simplification of the scheme for few-cycle Optical Parametric Chirped Pulse Amplification (OPCPA) which results in the elimination of a picosecond master oscillator and electronic synchronization loops. A fraction of a broadband seed pulse centered at 760 nm from a 70-MHz Ti:sapphire oscillator was frequency-shifted in a photonic crystal fiber to enable synchronized seeding of a picosecond Nd:YAG pump laser. The seed radiation at 1064 nm is produced in the soliton regime which makes it inherently more intense and stable in comparison with other methods of frequency conversion. The remaining fraction of the Ti:sapphire output is amplified with a FWHM bandwidth of 250 nm in a single timing-jitter-free OPCPA stage. Our work opens up the exciting possibility to use sub-picosecond pump pulses from highly efficient Yb-based amplifiers for jitter-less parametric amplification of carrier-envelope phase stabilized pulses from Ti:sapphire oscillators.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591, (2000).
    [CrossRef]
  2. A. Dubietis, G. Jonušauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal," Opt. Commun. 88, 437-440, (1992).
    [CrossRef]
  3. I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, and J.L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133, (1997).
    [CrossRef]
  4. X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, "Multiterawatt laser system based on optical parametric chirped pulse amplification," Opt. Lett. 27, 1135, (2002).
    [CrossRef]
  5. R. Butkus, R. Danielius, R. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700, (2004).
    [CrossRef]
  6. C.P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, "Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator," Opt. Lett. 29, 1369, (2004).
    [CrossRef] [PubMed]
  7. R.T. Zinkstok, S. Witte, W. Hogervorst, and K.S.E. Eikema, "High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control," Opt. Lett. 30, 78, (2004).
    [CrossRef]
  8. N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuška, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, "Multimillijoule chirped parametric amplification of few-cycle pulses," Opt. Lett. 30, 567-569, (2005).
    [CrossRef] [PubMed]
  9. S. Witte, R.T. Zinkstok, W. Hogervorst, and K.S.E. Eikema, "Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification," Opt. Express 13, 4903, (2005), <a href=�??http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4903�??> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4903</a>
    [CrossRef] [PubMed]
  10. G. Banfi, P. Di Trapani, R. Danielius, A. Piskarskas, R. Righini, and I. Santa, " Tunable femtosecond pulses close to the transform limit from traveling-wave parametric conversion," Opt. Lett. 18, 1547-1579, (1993).
    [CrossRef] [PubMed]
  11. T. Sosnowski, P.B. Stephens, and T.B. Norris, "Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification," Opt. Lett. 21, 140-142, (1996).
    [CrossRef] [PubMed]
  12. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, "Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible," Opt. Lett. 23, 1283, (1998).
    [CrossRef]
  13. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268, (1999).
    [CrossRef]
  14. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spoerlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B. 71, 457-465, (2000).
    [CrossRef]
  15. "Fully integrated broadly tunable femtosecond Ytterbium system," <a href=�??http://www.lightcon.com�??>http://www.lightcon.com</a>.
  16. A. Baltuška, T. Fuji, and T. Kobayashi, "Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers," Phys. Rev. Lett. 88, 133901, (2002).
    [CrossRef] [PubMed]
  17. C. Manzoni, G. Cerullo, and S. De Silvestri, "Ultrabroadband self-phase-stabilized pulses by difference-frequency generation," Opt. Lett. 29, 2668-2670, (2004).
    [CrossRef] [PubMed]
  18. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 412, 611-615, (2003).
    [CrossRef]
  19. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science 288, 635-639, (2000).
    [CrossRef] [PubMed]
  20. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.W. Hänsch, and F. Krausz, "Controlling the Phase Evolution of Few-Cycle Light Pulses," Phys. Rev. Lett. 85, 740-743, (2000).
    [CrossRef] [PubMed]
  21. M.J.W. Rodwell, D.M. Bloom, and K.J. Weingarten, "Subpicosecond laser timing stabilization," IEEE J. Quantum Electron. 25, 817, (1989).
    [CrossRef]
  22. W.F. Krupke, "Ytterbium solid-state lasers�?? the first decade," IEEE J. Sel. Top. in Quantum Electron. 6, 1287-1296, (2000).
    [CrossRef]
  23. A. Baltuška, T. Fuji, and T. Kobayashi, "Visible Pulse Compression to 4 fs by Optical Parametric Amplification and Programmable Dispersion Control," Opt. Lett. 27, 306-308, (2002).
    [CrossRef]
  24. T.M. Fortier, D.J. Jones, and S.T. Cundiff, "Phase stabilization of an octace-spanning Ti:sapphire laser," Opt. Lett. 28, 2198-2200, (2003).
    [CrossRef] [PubMed]
  25. O.D. Mücke, R. Ell, A. Winter, J.-W. Kim, J.R. Birge, L. Matos, and F.X. Kärtner, "Self-Referenced 200 MHz Octave-Spanning Ti:Sapphire Laser with 50 Attosecond Carrier Envelope Phase Jitter," Opt. Express 13, 5163, (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5163">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5163</a>
    [CrossRef] [PubMed]
  26. Z.Y. Wei, Y. Kobayashi, Z.G. Zhang, and K. Torizuka, "Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers," Opt. Lett. 26, 1806-1808, (2001).
    [CrossRef]
  27. H. Zheng, J. Wu, H. Xu, K. Wu, and E. Wu, "Generation of accurately synchronized pump source for optical parametric chirped pulse amplification," Appl. Phys. B 79, 837-839, (2004).
    [CrossRef]
  28. T. Fuji, A. Unterhuber, V.S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125, (2003).
    [CrossRef]
  29. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  30. F.M. Mitschke and L.F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661, (1986).
    [CrossRef] [PubMed]
  31. E.M. Dianov, A.Y. Karasik, P.V. Mamyshev, A.M. Prokhorov, V.N. Serkin, M.F. Stel'makh, and A.A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297, (1985).
  32. P.S.J. Russell, "Photonic Crystal Fibers," Science 299, 358-362, (2003).
    [CrossRef] [PubMed]
  33. X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, "Soliton self-frequency shift in a short tapered air�??silica microstructure fiber," Opt. Lett. 26, 358-360, (2001).
    [CrossRef]
  34. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515, (2003).
    [CrossRef] [PubMed]
  35. E.E. Serebryannikov, A.M. Zheltikov, N. Ishii, C.Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuška, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B (in press) DOI: 10.1007/s00340-005-1929-8.
  36. A. Poppe, L. Xu, F. Krausz, and C. Spielmann, "Noise Characterization of Sub-10-fs Ti:Sapphire Oscillators," IEEE J. Sel. Top. in Quantum Electron. 4, 179-184, (1998).
    [CrossRef]

Appl. Phys. B (4)

R. Butkus, R. Danielius, R. Dubietis, A. Piskarskas, and A. Stabinis, "Progress in chirped pulse optical parametric amplifiers," Appl. Phys. B 79, 693-700, (2004).
[CrossRef]

H. Zheng, J. Wu, H. Xu, K. Wu, and E. Wu, "Generation of accurately synchronized pump source for optical parametric chirped pulse amplification," Appl. Phys. B 79, 837-839, (2004).
[CrossRef]

T. Fuji, A. Unterhuber, V.S. Yakovlev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125, (2003).
[CrossRef]

E.E. Serebryannikov, A.M. Zheltikov, N. Ishii, C.Y. Teisset, S. Köhler, T. Fuji, T. Metzger, F. Krausz, and A. Baltuška, "Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers," Appl. Phys. B (in press) DOI: 10.1007/s00340-005-1929-8.

Appl. Phys. B. (1)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spoerlein, and W. Zinth, "Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR," Appl. Phys. B. 71, 457-465, (2000).
[CrossRef]

Appl. Phys. Lett. (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, "Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification," Appl. Phys. Lett. 74, 2268, (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M.J.W. Rodwell, D.M. Bloom, and K.J. Weingarten, "Subpicosecond laser timing stabilization," IEEE J. Quantum Electron. 25, 817, (1989).
[CrossRef]

IEEE J. Sel. Top. in Quantum Electron. (2)

W.F. Krupke, "Ytterbium solid-state lasers�?? the first decade," IEEE J. Sel. Top. in Quantum Electron. 6, 1287-1296, (2000).
[CrossRef]

A. Poppe, L. Xu, F. Krausz, and C. Spielmann, "Noise Characterization of Sub-10-fs Ti:Sapphire Oscillators," IEEE J. Sel. Top. in Quantum Electron. 4, 179-184, (1998).
[CrossRef]

JETP Lett. (1)

E.M. Dianov, A.Y. Karasik, P.V. Mamyshev, A.M. Prokhorov, V.N. Serkin, M.F. Stel'makh, and A.A. Fomichev, "Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers," JETP Lett. 41, 294-297, (1985).

Nature (2)

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres," Nature 424, 511-515, (2003).
[CrossRef] [PubMed]

A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 412, 611-615, (2003).
[CrossRef]

Opt. Commun. (2)

A. Dubietis, G. Jonušauskas, and A. Piskarskas, "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal," Opt. Commun. 88, 437-440, (1992).
[CrossRef]

I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, and J.L. Collier, "The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers," Opt. Commun. 144, 125-133, (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (13)

Z.Y. Wei, Y. Kobayashi, Z.G. Zhang, and K. Torizuka, "Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers," Opt. Lett. 26, 1806-1808, (2001).
[CrossRef]

A. Baltuška, T. Fuji, and T. Kobayashi, "Visible Pulse Compression to 4 fs by Optical Parametric Amplification and Programmable Dispersion Control," Opt. Lett. 27, 306-308, (2002).
[CrossRef]

T.M. Fortier, D.J. Jones, and S.T. Cundiff, "Phase stabilization of an octace-spanning Ti:sapphire laser," Opt. Lett. 28, 2198-2200, (2003).
[CrossRef] [PubMed]

X. Liu, C. Xu, W.H. Knox, J.K. Chandalia, B.J. Eggleton, S.G. Kosinski, and R.S. Windeler, "Soliton self-frequency shift in a short tapered air�??silica microstructure fiber," Opt. Lett. 26, 358-360, (2001).
[CrossRef]

F.M. Mitschke and L.F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661, (1986).
[CrossRef] [PubMed]

G. Banfi, P. Di Trapani, R. Danielius, A. Piskarskas, R. Righini, and I. Santa, " Tunable femtosecond pulses close to the transform limit from traveling-wave parametric conversion," Opt. Lett. 18, 1547-1579, (1993).
[CrossRef] [PubMed]

T. Sosnowski, P.B. Stephens, and T.B. Norris, "Production of 30-fs pulses tunable throughout the visible spectral region by a new technique in optical parametric amplification," Opt. Lett. 21, 140-142, (1996).
[CrossRef] [PubMed]

G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, "Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible," Opt. Lett. 23, 1283, (1998).
[CrossRef]

C.P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, "Phase-preserving chirped-pulse optical parametric amplification to 17.3 fs directly from a Ti:sapphire oscillator," Opt. Lett. 29, 1369, (2004).
[CrossRef] [PubMed]

R.T. Zinkstok, S. Witte, W. Hogervorst, and K.S.E. Eikema, "High-power parametric amplification of 11.8-fs laser pulses with carrier-envelope phase control," Opt. Lett. 30, 78, (2004).
[CrossRef]

N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuška, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, "Multimillijoule chirped parametric amplification of few-cycle pulses," Opt. Lett. 30, 567-569, (2005).
[CrossRef] [PubMed]

X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, "Multiterawatt laser system based on optical parametric chirped pulse amplification," Opt. Lett. 27, 1135, (2002).
[CrossRef]

C. Manzoni, G. Cerullo, and S. De Silvestri, "Ultrabroadband self-phase-stabilized pulses by difference-frequency generation," Opt. Lett. 29, 2668-2670, (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Baltuška, T. Fuji, and T. Kobayashi, "Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers," Phys. Rev. Lett. 88, 133901, (2002).
[CrossRef] [PubMed]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T.W. Hänsch, and F. Krausz, "Controlling the Phase Evolution of Few-Cycle Light Pulses," Phys. Rev. Lett. 85, 740-743, (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591, (2000).
[CrossRef]

Science (2)

P.S.J. Russell, "Photonic Crystal Fibers," Science 299, 358-362, (2003).
[CrossRef] [PubMed]

D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, and S.T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science 288, 635-639, (2000).
[CrossRef] [PubMed]

Other (2)

G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

"Fully integrated broadly tunable femtosecond Ytterbium system," <a href=�??http://www.lightcon.com�??>http://www.lightcon.com</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Layout of experimental setup for all-optically synchronized OPCPA. PCF, photonic crystal fiber; TFP, thin-film polarizer; CM, chirped-mirror pair; BS, 50% beamsplitter; λ/2, half-wave plate; λ/4, quarter-wave plate; Nd:YAG, side-cw-diode-pumped gain modules; FI, Faraday isolator; FR, Faraday rotator.

Fig. 2.
Fig. 2.

Frequency shift in the photonic crystal fiber. Solid curve shows an output spectrum optimized for injection seeding at 1064 nm. The input spectrum from the Ti:sapphire oscillator is shown as dashed curve.

Fig. 3.
Fig. 3.

Performance of the regenerative amplifier seeded with an optical solitonic pulse from PCF. (a), intracavity pulse train of pulses amplified to the energy of 0.2-mJ. (b), background-free autocorrelation traces obtained with and without an intracavity etalon for a fixed number of intracavity roundtrips. Red curves show Gaussian autocorrelation fits.

Fig. 4.
Fig. 4.

Results of timing-jitter-free single-pass parametric amplification. Solid curve, amplified seed spectrum that supports a 6-fs pulse duration assuming perfect recompression (inset); dashed curve, seed spectrum; dash-dotted curve, calculated parametric gain in a 3-mm BBO.

Metrics