Abstract

We present a new high speed full-field optical coherence tomography (OCT) instrument, the first full-field OCT system that is capable of in vivo ocular imaging. An isotropic resolution of ~ 1 μm is achieved thanks to the use of a xenon arc lamp source and relatively high numerical aperture microscope objectives in a Linnik-type interferometer. Full-field illumination allows the capture of two-dimensional en face images in parallel, using a fast CMOS camera as detector array. Each en face image is acquired in a 4 ms period, at a maximum repetition rate of 250 Hz. Detection sensitivity per en face image is 71 dB. Higher sensitivity can be achieved by image correlation and averaging, although frame rate is reduced. We present the first preliminary results of in vivo imaging in the anterior segment of the rat eye, which reveal some cellular features in the corneal layers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical Coherence Tomography.,�?? Science 254, 1178�??1180 (1991).
    [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, �??Imaging of macular diseases with optical coherence tomography,�?? Ophthalmol. 102, 217-229 (1995).
  3. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography of the human retina,�?? Archiv. Ophthalmol. 113, 325-332 (1995).
    [CrossRef]
  4. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Medicine 7, 502-507 (2001).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �?? In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221�??1223 (1999).
    [CrossRef]
  6. B. Považay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher,W. Drexler, A. Apolonski,W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, �??Submicrometer axial resolution optical coherence tomography,�?? Opt. Lett. 20, 1800�??1802 (2002).
    [CrossRef]
  7. M. Wojtkowski, T. Bajraszewski, P. Targowski and A. Kowalczyk, �?? Real-time in vivo imaging by high-speed spectral optical coherence tomography,�?? Opt. Lett. 28, 1745�??1747 (2003).
    [CrossRef] [PubMed]
  8. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of fourier domain vs. time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
    [CrossRef] [PubMed]
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, �??Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Express 11, 2183-2189 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
    [CrossRef] [PubMed]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency-domain imaging,�?? Opt. Express 11, 2953-2963 (2003).
    [CrossRef] [PubMed]
  12. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404-2422 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
    [CrossRef] [PubMed]
  13. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,�?? Opt. Express 12, 2435-2447 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
    [CrossRef] [PubMed]
  14. A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, �??En face coherence imaging using galvanometer scanner modulation,�?? Opt. Lett. 23, 147�??149 (1998).
    [CrossRef]
  15. C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, �??Three-dimensional imaging of the human retina by high-speed optical coherence tomography,�?? Opt. Express 11, 2753�??2761 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>
    [CrossRef] [PubMed]
  16. S. Bourquin, P. Seitz, R. P. Salath, �??Optical coherence topography based on a two dimensional smart detector array,�?? Opt. Lett. 25, 102-104 (2000).
    [CrossRef]
  17. E Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberl, C. Rullire, P.E. Minot, M. Lassgues, and J.E. Surlve Bazeille, �??Wide-field optical coherence tomography: imaging of biological tissues,�?? App. Opt. 41, 2059-2064 (2002).
    [CrossRef]
  18. A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, �??A thermal light source technique for optical coherence tomography,�?? Opt. Comm. 185, 57-64 (2000).
    [CrossRef]
  19. L. Vabre, A. Dubois, and A. C. Boccara, �??Thermal-light full-field optical coherence tomography,�?? Opt. Lett. 27, 530�??532 (2002).
    [CrossRef]
  20. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, �??High-resolution full-field optical coherence tomography with a Linnik microscope,�?? Appl. Opt. 41, 805�??812 (2002).
    [CrossRef] [PubMed]
  21. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, �??Ultrahigh-resolution full-field optical coherence tomography,�?? Appl. Opt. 43, 2874�??2883 (2004).
    [CrossRef] [PubMed]
  22. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, �??Three-dimensional cellular-level imaging using full-field optical coherence tomography,�?? Phys. Med. Biol. 49, 1227�??1234 (2004).
    [CrossRef] [PubMed]
  23. A. Perea-Gomez, A. Camus, A. Moreau, K. Grieve, G. Moneron, A. Dubois, C. Cibert, and J. Collignon, �??Initiation of Gastrulation in the Mouse Embryo Is Preceded by an Apparent Shift in the Orientation of the Anterior-Posterior Axis,�?? Current Biology 14:3, 197�??207 (2004).
  24. K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J.-F. Le Gargasson, �??Ocular tissue imaging using ultrahigh resolution full-field optical coherence tomography,�?? Invest. Ophthalmol. Visual Sci. 45, 4126�??4131 (2004).
    [CrossRef]
  25. G. Moneron, A. C. Boccara, and A. Dubois, �??Stroboscopic Ultrahigh-Resolution Full-Field Optical Coherence Tomography,�?? Opt. Lett. 30, 1351�??1353 (2005).
    [CrossRef] [PubMed]
  26. K. Grieve, G. Moneron, A. Dubois, and A. C. Boccara, �??Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,�?? J. Opt. A: Pure Appl. Opt. 7: 368-373 (2005).
    [CrossRef]
  27. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144�??151 (1999).
    [CrossRef]
  28. Safe Use of Lasers, ANSI Z136.1-1993. New York: American National Standards Institute (1993).
  29. International Commission on Non-Ionizing Radiation Protection, Guidelines on Limits of Exposure to Broadband Incoherent Optical Radiation (0.38 to 3 m), Health Phys. 73, 539�??554 (1997).
    [PubMed]
  30. <a href= "http://www.heidelbergengineering.de/">http://www.heidelbergengineering.de/</a>
  31. S. Martinez, S. Macknik and D. H. Hubel, �??The role of fixational eye movements in visual perception,�?? Nature Reviews Neuroscience, 5:229, (2004)
    [CrossRef]
  32. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, �??Tracking optical coherence tomography,�?? Opt. Lett. 29, 2139�??2141 (2004).
    [CrossRef] [PubMed]
  33. B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto,and P. Artal, �??Adaptive-optics ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  34. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, �??Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,�?? Opt. Express 13, 4792-4811 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>
    [CrossRef] [PubMed]

App. Opt. (1)

E Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberl, C. Rullire, P.E. Minot, M. Lassgues, and J.E. Surlve Bazeille, �??Wide-field optical coherence tomography: imaging of biological tissues,�?? App. Opt. 41, 2059-2064 (2002).
[CrossRef]

Appl. Opt. (2)

Archiv. Ophthalmol. (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, �??Optical coherence tomography of the human retina,�?? Archiv. Ophthalmol. 113, 325-332 (1995).
[CrossRef]

Current Biology (1)

A. Perea-Gomez, A. Camus, A. Moreau, K. Grieve, G. Moneron, A. Dubois, C. Cibert, and J. Collignon, �??Initiation of Gastrulation in the Mouse Embryo Is Preceded by an Apparent Shift in the Orientation of the Anterior-Posterior Axis,�?? Current Biology 14:3, 197�??207 (2004).

Health Phys. (1)

International Commission on Non-Ionizing Radiation Protection, Guidelines on Limits of Exposure to Broadband Incoherent Optical Radiation (0.38 to 3 m), Health Phys. 73, 539�??554 (1997).
[PubMed]

Invest. Ophthalmol. Visual Sci. (1)

K. Grieve, M. Paques, A. Dubois, J. Sahel, A. C. Boccara, and J.-F. Le Gargasson, �??Ocular tissue imaging using ultrahigh resolution full-field optical coherence tomography,�?? Invest. Ophthalmol. Visual Sci. 45, 4126�??4131 (2004).
[CrossRef]

J. Biomed. Opt. (1)

C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, �??Dispersion effects in partial coherence interferometry: Implications for intraocular ranging,�?? J. Biomed. Opt. 4, 144�??151 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. Grieve, G. Moneron, A. Dubois, and A. C. Boccara, �??Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography,�?? J. Opt. A: Pure Appl. Opt. 7: 368-373 (2005).
[CrossRef]

Nature Medicine (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, �??Ultrahigh-resolution ophthalmic optical coherence tomography,�?? Nature Medicine 7, 502-507 (2001).
[CrossRef] [PubMed]

Nature Reviews Neuroscience (1)

S. Martinez, S. Macknik and D. H. Hubel, �??The role of fixational eye movements in visual perception,�?? Nature Reviews Neuroscience, 5:229, (2004)
[CrossRef]

Ophthalmol. (1)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, �??Imaging of macular diseases with optical coherence tomography,�?? Ophthalmol. 102, 217-229 (1995).

Opt. Comm. (1)

A. F. Fercher, C. K. Hitzenberger, M. Sticker, E. Moreno-Barriuso, R. Leitgeb, W. Drexler, H. Sattmann, �??A thermal light source technique for optical coherence tomography,�?? Opt. Comm. 185, 57-64 (2000).
[CrossRef]

Opt. Express (7)

C. K. Hitzenberger, P. Trost, P. Lo, and Q. Zhou, �??Three-dimensional imaging of the human retina by high-speed optical coherence tomography,�?? Opt. Express 11, 2753�??2761 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, �??Sensitivity advantage of swept source and Fourier domain optical coherence tomography,�?? Opt. Express 11, 2183-2189 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>.
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency-domain imaging,�?? Opt. Express 11, 2953-2963 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker �??Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,�?? Opt. Express 12, 2404-2422 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>.
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,�?? Opt. Express 12, 2435-2447 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, �??Performance of fourier domain vs. time domain optical coherence tomography,�?? Opt. Express 11, 889-894 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, �??Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,�?? Opt. Express 13, 4792-4811 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>
[CrossRef] [PubMed]

Opt. Lett. (10)

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, �??Tracking optical coherence tomography,�?? Opt. Lett. 29, 2139�??2141 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernndez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto,and P. Artal, �??Adaptive-optics ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

G. Moneron, A. C. Boccara, and A. Dubois, �??Stroboscopic Ultrahigh-Resolution Full-Field Optical Coherence Tomography,�?? Opt. Lett. 30, 1351�??1353 (2005).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, �??Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,�?? Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, �?? In vivo ultrahigh-resolution optical coherence tomography,�?? Opt. Lett. 24, 1221�??1223 (1999).
[CrossRef]

B. Považay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher,W. Drexler, A. Apolonski,W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, �??Submicrometer axial resolution optical coherence tomography,�?? Opt. Lett. 20, 1800�??1802 (2002).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, P. Targowski and A. Kowalczyk, �?? Real-time in vivo imaging by high-speed spectral optical coherence tomography,�?? Opt. Lett. 28, 1745�??1747 (2003).
[CrossRef] [PubMed]

A. G. Podoleanu, G. M. Dobre, and D. A. Jackson, �??En face coherence imaging using galvanometer scanner modulation,�?? Opt. Lett. 23, 147�??149 (1998).
[CrossRef]

S. Bourquin, P. Seitz, R. P. Salath, �??Optical coherence topography based on a two dimensional smart detector array,�?? Opt. Lett. 25, 102-104 (2000).
[CrossRef]

L. Vabre, A. Dubois, and A. C. Boccara, �??Thermal-light full-field optical coherence tomography,�?? Opt. Lett. 27, 530�??532 (2002).
[CrossRef]

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, �??Three-dimensional cellular-level imaging using full-field optical coherence tomography,�?? Phys. Med. Biol. 49, 1227�??1234 (2004).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, �??Optical Coherence Tomography.,�?? Science 254, 1178�??1180 (1991).
[CrossRef] [PubMed]

Other (2)

Safe Use of Lasers, ANSI Z136.1-1993. New York: American National Standards Institute (1993).

<a href= "http://www.heidelbergengineering.de/">http://www.heidelbergengineering.de/</a>

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic illustration of the high speed full-field OCT set-up. Illumination: continuous 300 W Xenon arc lamp with multimode fiber and (L1) microscope objective as entry lens (air, 10×, 0.25 NA); BS: beam splitter; MO: vertically positioned microscope objectives (water-immersion, 10×, 0.3 NA); L2: achromatic doublet lens (75 cm focal length); Ref: reference mirror (9% reflectivity); PZT: piezoelectric stage actuator; Motorized translation stage: for axial translation of the sample.

Fig. 2.
Fig. 2.

In vivo full-field OCT imaging of the rat anterior segment. Field size of each image: 300 μm × 300 μm, bar measures 100μm. Due to the curvature of the rat eye, x-y planes often cut through several cellular layers, giving an annular shape to the next appearing layers. A: corneal surface; B: penetrating the epithelial layer; C: the dark central area is the epithelial layer, outlined by the highly reflective surface; D, E: within the low scattering epithelial layer; F, G, H, I: successive depth steps cutting through the basal membrane, viewing the stroma in the center, surrounded by the comparatively low scattering epithelium; J, K, L, M, N, O: progressing down through the stroma. Keratocyte nuclei are clearly seen, stromal and collagen fiber structures are suggested; P: from the outermost edge toward the center, we see the lower stroma, Descemet’s membrane (thick double ring) and touch the endothe-lial layer in the center; Q: slightly lower, the endothelial layer in the center gives maximal reflectivity and scattering; R, S, T, U: progressing down through the lower corneal layers: Descemet’s membrane (double outer ring) and the endothelium (brightest inner ring), passing into the vitreous (center, no signal). Cellular details are seen in the endothelium; V: ~ 1.2 mm below image U, we touch the crystalline lens capsule; W: cutting through the capsule (outer ring) and touching the inner lens surface; X: capsule (outer ring) and inner lens (center). Fiber structure is suggested in the inner lens tissue.

Metrics