Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiation torque on a spherical birefringent particle in the long wave length limit: analytical calculation

Open Access Open Access

Abstract

We present an analytical calculation of the radiation torque on a spherical birefringent particle illuminated by plane electromagnetic wave of arbitrary polarization mode and direction of propagation in the small particle limit. The calculation is based on the extended Mie theory and the Maxwell stress tensor formalism. It is found that, even in the small particle limit, the torque is not always normal to the external electric field for the linearly polarized light. For different incident directions and polarization modes of the incident light, the radiation torque τ may exhibit different types of power law dependence on the particle radius a, τ~a γ , with the exponent γ=3, 5, and 6. In the presence of viscous drag, the extraordinary axis of the illuminated particle may be aligned by the optical torque with the incident electric field, the incident magnetic field, or, the incident wave vector, depending on the incident polarization mode and material birefringence of the particle.

©2005 Optical Society of America

Full Article  |  PDF Article
More Like This
On the rotational stability of nonspherical particles driven by the radiation torque

Ferdinando Borghese, Paolo Denti, Rosalba Saija, and Maria Antonia Iatì
Opt. Express 15(14) 8960-8971 (2007)

Calculation of the torque on dielectric elliptical cylinders

Carsten Rockstuhl and Hans Peter Herzig
J. Opt. Soc. Am. A 22(1) 109-116 (2005)

Radiation torque on nonspherical particles in the transition matrix formalism

Ferdinando Borghese, Paolo Denti, Rosalba Saija, and Maria Antonia Iatì
Opt. Express 14(20) 9508-9521 (2006)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1. Geometry of the scattering problem.

Tables (1)

Tables Icon

Table 1. Final orientation of the extraordinary axis by the radiation torque

Equations (70)

Equations on this page are rendered with MathJax. Learn more.

τ = q ̂ ( χ o χ e ) τ 0 sin 2 ϕ e
ε r ε 0 ε = ε r ε 0 ( 1 0 0 0 1 0 0 0 1 + u a ) ,
× × ( ε 1 · D I ) k s 2 D I = 0 ,
ε 1 = ( 1 0 0 0 1 0 0 0 1 1 + u a ) .
D I = n , m E mn [ c mn M mn ( 1 ) ( k , r ) + d mn N mn ( 1 ) ( k , r ) ] ,
C mn = [ 2 n + 1 n ( n + 1 ) ( n m ) ! ( n + m ) ! ] 1 2 .
ε 1 · M mn ( 1 ) = v = 0 2 u = v + v [ g ˜ uv mn M uv ( 1 ) + e ˜ uv mn N uv ( 1 ) + f ˜ uv mn L uv ( 1 ) ] ,
ε 1 · N mn ( 1 ) = v = 0 2 u = v + v [ g ¯ uv mn M uv ( 1 ) + e ¯ uv mn N uv ( 1 ) + f ¯ uv mn L uv ( 1 ) ] ,
g ˜ uv mn = δ nv δ mu + ( n 2 + n m 2 ) u a δ nv δ mu n ( n + 1 )
e ˜ uv mn = i ( n + m ) m u a δ n 1 , v δ mu n ( 2 n + 1 ) + i ( n m + 1 ) m u a δ n + 1 , v δ mu ( n + 1 ) ( 2 n + 1 )
f ˜ uv mn = i ( n + m ) m u a δ n 1 , v δ mu ( 2 n + 1 ) + i ( n m + 1 ) m u a δ n + 1 , v δ mu ( 2 n + 1 )
g ¯ uv mn = i ( n + m ) ( n + 1 ) m u a δ n 1 , v δ mu n ( n 1 ) ( 2 n + 1 ) i ( n m + 1 ) n m u a δ n + 1 , v δ mu ( n + 1 ) ( n + 2 ) ( 2 n + 1 )
e ¯ uv mn = δ nv δ mu + [ ( 2 n 2 + 2 n + 3 ) m 2 + ( 2 n 2 + 2 n 3 ) n ( n + 1 ) ] u a δ nv δ mu n ( n + 1 ) ( 2 n 1 ) ( 2 n + 3 )
f ¯ uv mn = ( n 2 + n 3 m 2 ) u a δ n v δ mu ( 2 n 1 ) ( 2 n + 3 ) + ( n + 1 ) ( n + m 1 ) ( n + m ) u a δ n 2 , v δ mu ( 2 n 1 ) ( 2 n + 1 )
v = 1 2 u = v + v E uv E mn [ g ˜ mn uv c uv + g ¯ mn uv d uv ] = λ c mn ,
v = 1 2 u = v + v E uv E mn [ e ˜ mn uv c uv + e ¯ mn uv d uv ] = λ d mn .
V l = i ε 0 ε r λ l n = 1 2 m = n n E mn [ c mn , l M mn ( 1 ) ( k l , r ) + d mn , l N mn ( 1 ) ( k l , r ) ]
· V l = 0 ,
× × ( ε 1 · V l ) k s 2 V l = 0 .
D I = l = 1 2 n d α l V l ,
E I = 1 ε 0 ε r ε 1 · D I = n = 1 2 m = n n i E mn l = 1 2 n d α l [ c mn , l M mn ( 1 ) ( k l , r ) + d mn , l N mn ( 1 ) ( k l , r ) + w mn , l λ l L mn ( 1 ) ( k l , r ) ]
+ l = 1 2 n d i α l [ w 00 , l λ l L 00 ( 1 ) ( k l , r ) ]
H I = i ω μ 0 × E I = 1 ω μ 0 n = 1 2 m = n n E mn l = 1 2 n d k l α l [ d mn , l M mn ( 1 ) ( k l , r ) + c mn , l N mn ( 1 ) ( k l , r ) ]
E s = n = 1 2 m = n n i E mn [ a mn N mn ( 3 ) ( k 0 , r ) + b mn M mn ( 3 ) ( k 0 , r ) ]
H s = k 0 ω μ 0 n = 1 2 m = n n E mn [ b mn N mn ( 3 ) ( k 0 , r ) + a mn M mn ( 3 ) ( k 0 , r ) ]
k 0 = k 0 ( sin θ k cos φ k e x + sin θ k sin φ k e y + cos θ k e z ) ,
E inc = E 0 p ̂ e i k 0 · r = E 0 ( p θ θ ̂ k + p φ φ ̂ k ) e i k 0 · r ,
H inc = E 0 k 0 × p ̂ ω μ 0 e i k 0 · r = k 0 ω μ 0 E 0 ( p θ φ ̂ k p φ θ ̂ k ) e i k 0 · r ,
k ̂ 0 × θ ̂ k = φ ̂ k , θ ̂ k × φ ̂ k = k ̂ 0 , φ ̂ k × k ̂ 0 = θ ̂ k .
E inc = n = 1 2 m = n n i E mn [ p mn N mn ( 1 ) ( k 0 , r ) + q mn M mn ( 1 ) ( k 0 , r ) ]
H inc = k 0 ω μ 0 n = 1 2 m = n n E mn [ q mn N mn ( 1 ) ( k 0 , r ) + p mn M mn ( 1 ) ( k 0 , r ) ] ,
p mn = [ p θ τ mn ( cos θ k ) i p φ π mn ( cos θ k ) ] e i m φ k ,
q mn = [ p θ π mn ( cos θ k ) i p φ τ mn ( cos θ k ) ] e i m φ k ,
π mn ( cos θ ) = C mn m sin θ P n m ( cos θ ) ,
τ mn ( cos θ ) = C mn d d θ P n m ( cos θ ) ,
1 m s l = 1 2 n d 1 k ¯ l λ l j n ( k ¯ l m s η ) w mn , l α l + ξ n ( η ) a mn + 1 m s l = 1 2 n d 1 k ¯ l ψ n ( k ¯ l m s η ) d mn , l α l = ψ n ( η ) p mn
ξ n ( η ) b mn + 1 m s l = 1 2 n d 1 k ¯ l ψ n ( k ¯ l m s η ) c mn , l α l = ψ n ( η ) q mn
ξ n ( η ) a mn + μ 0 μ s l = 1 2 n d ψ n ( k ¯ l m s η ) d mn , l α l = ψ n ( η ) p mn
ξ n ( η ) b mn + μ 0 μ s l = 1 2 n d ψ n ( k ¯ l m s η ) c mn , l α l = ψ n ( η ) q mn
η = k 0 a , m s = 1 + u a k s k 0 , k ¯ l = k l k s , λ l = k s 2 k l 2 = 1 k ¯ l 2 ,
ψ n ( z ) = z j n ( z ) , ξ n ( z ) = z h n ( 1 ) ( z ) .
E e = n = 1 2 m = n n i E mn [ a mn N mn ( 3 ) ( k 0 , r ) + b mn M mn ( 3 ) ( k 0 , r ) p mn N mn ( 1 ) ( k 0 , r ) q mn M mn ( 1 ) ( k 0 , r ) ]
H e = k 0 ω μ 0 n = 1 2 m = n n E mn [ b mn N mn ( 3 ) ( k 0 , r ) + a mn M mn ( 3 ) ( k 0 , r ) q mn N mn ( 1 ) ( k 0 , r ) p mn M mn ( 1 ) ( k 0 , r ) ]
T ̂ = 1 2 Re [ E e D e * + H e B e * 1 2 ( E e · D e * + H e · B e * ) I ̂ ]
τ = d S · K ̂ = [ e r · K ̂ ] d S
K ̂ = T ̂ · [ r × I ̂ ] = T ̂ × r .
τ = [ e r · ( T ̂ × r ) ] dS = [ r × ( T ̂ · e r ) ] dS = r 3 e r × [ T ̂ · e r ] d Ω ,
ξ n ( ρ ) ( i ) n + 1 exp ( i ρ ) , ζ n ( ρ ) i n + 1 exp ( i ρ ) , ψ n ( ρ ) [ ξ n ( ρ ) + ζ n ( ρ ) ] 2 .
τ x = Re [ 𝒩 1 ] , τ y = Im [ 𝒩 1 ] , τ z = Re [ 𝒩 2 ] ,
𝒩 1 = 2 π ε 0 E 0 2 k 0 3 n = 1 2 m = n n 1 ρ mn [ a mn a m 1 n * + b mn b m 1 n *
1 2 ( a mn p m 1 n * + p mn a m 1 n * + b mn q m 1 n * + q mn b m 1 n * ) ]
𝒩 2 = 2 π ε 0 E 0 2 k 0 3 n = 1 2 m = n n m [ a mn a m n * + b mn b m n *
1 2 ( a mn p m n * + p mn a m n * + b mn q m n * + q mn b m n * ) ]
𝒩 1 = c 3 η 3 + c 5 η 5 + c 6 η 6 + o ( η 7 ) ,
c 3 = 3 p θ u a ε r [ Re p φ i p θ cos θ k ] sin θ k 4 π 2 ( 2 + ε r ) ( u a ε r + ε r + 2 ) ε 0 λ 0 3 E 0 2
c 5 = [ i p φ 2 u a ε r ( ε r 1 ) 2 f 0 sin 2 θ k + i p θ 2 u a ε r ( f 1 + f 2 cos 2 θ k ) sin 2 θ k
+ u a ε r p θ [ Re p φ ] ( f 3 f 2 cos 2 θ k ) sin θ k ] ε 0 λ 0 3 E 0 2
c 6 = 3 p θ u a 2 ε r 2 [ Im p φ ] sin θ k 2 π 2 ( 2 + ε r ) 2 ( u a ε r + ε r + 2 ) 2 ε 0 λ 0 3 E 0 2
τ x = 6 π p θ [ Re p φ ] u a ε r sin θ k ( 2 + ε r ) ( u a ε r + ε r + 2 ) ε 0 a 3 E 0 2 + 96 π 4 p θ [ Im p φ ] u a 2 ε r 2 sin θ k ( 2 + ε r ) 2 ( u a ε r + ε r + 2 ) 2 λ 0 3 ε 0 a 6 E 0 2 ,
τ y = 3 π p θ 2 u a ε r sin 2 θ k ( 2 + ε r ) ( u a ε r + ε r + 2 ) ε 0 a 3 E 0 2 + 4 π 3 p φ 2 u a ε r ( ε r 1 ) 2 sin 2 θ k 15 ( 2 ε r + 3 ) ( 2 ε r + 3 + u a ε r ) λ 0 3 ε 0 a 5 E 0 2 ,
τ x = 6 π p θ [ Re p φ ] u a ε r sin θ k ( 2 + ε r ) ( u a ε r + ε r + 2 ) ε 0 a 3 E 0 2 ,
τ y = 3 π p θ 2 u a ε r sin 2 θ k ( 2 + ε r ) ( u a ε r + ε r + 2 ) ε 0 a 3 E 0 2 ,
cos θ τ = cos θ k Q ( p θ 1 q Re p φ 1 + q )
q = p θ 2 p φ 2 { ( p θ 2 p φ 2 ) 2 + 4 p θ 2 [ Re p φ ] 2 } 1 2 and Q = { 2 p θ 2 cos 2 θ k + 2 [ Re p φ ] 2 } 1 2 .
τ = 6 π u a ε r p θ sin θ k ( 2 + ε r ) ( 2 + ε r + u a ε r ) ε 0 a 3 E 0 2 e z × ( p θ θ ̂ k + p φ φ ̂ k )
= 3 π ( χ e χ o ) sin 2 ϕ e ( 2 + ε r ) ( 2 + ε r + u a ε r ) ε 0 a 3 E 0 2 q ̂
τ 0 = 3 π ( 2 + ε r ) ( 2 + ε r + u a ε r ) ε 0 a 3 E 0 2 .
τ = τ y e y = 4 π 3 ( ε r 1 ) 2 ε r u a sin 2 θ k 15 ( 2 ε r + 3 ) ( 3 + 2 ε r + u a ε r ) λ 0 2 ε 0 a 5 E 0 2 e y ,
τ = τ x e x = 96 π 4 p θ Im ( p φ ) u a 2 ε r 2 sin θ k ( 2 + ε r ) 2 ( u a ε r + ε r + 2 ) 2 λ 0 3 ε 0 a 6 E 0 2 e x .
t E ( e z × E inc ) · τ e z · E inc = 6 π ε r u a ( p φ 2 + p θ 2 cos 2 θ k ) ( 2 + ε r ) ( 2 + ε r + u a ε r ) ε 0 a 3 E 0 2 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.