Abstract

We have evaluated the ability of three commercially available deformable mirrors to compensate the aberrations of the eye using a model for aberrations developed by Thibos, Bradley and Hong. The mirrors evaluated were a 37 actuator membrane mirror and 19 actuator piezo mirror (OKO Technologies) and a 35 actuator bimorph mirror (AOptix Inc). For each mirror, Zernike polynomials and typical ocular aberrated wavefronts were fitted with the mirror modes measured using a Twyman-Green interferometer. The bimorph mirror showed the lowest root mean square error, although the 19 actuator piezo device showed promise if extended to more actuators. The methodology can be used to evaluate new deformable mirrors as they become available.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Liang and D. R. Williams, �??Aberrations and retinal image quality of the normal human eye,�?? J. Opt. Soc. Am. A 14, 2873�??2883 (1997).
    [CrossRef]
  2. J. Liang, D. R. Williams, and D. T. Miller, �??Supernormal vision and high-resolution retinal imaging through adaptive optics,�?? J. Opt. Soc. Am. A 14, 2884�??2892 (1997).
    [CrossRef]
  3. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, �??Towards wide-field retinal imaging with adaptive optics,�?? Opt. Commun. 230, 225�??238 (2004).
    [CrossRef]
  4. N. Doble, G. Y. Yoon, L. Chen, P. Bierden, B. Singer, S. Oliver, and D. R. Williams, �??Use of a microelectro-mechanical mirror for adaptive optics in the human eye,�?? Opt. Lett. 27, 1537�??1539 (2002).
    [CrossRef]
  5. E. J. Fernández and P. Artal, �??Membrane deformable mirror for adaptive optics: performance limits in visual optics,�?? Opt. Express 11, 1056�??1069 (2003).
    [CrossRef] [PubMed]
  6. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, �??Benefit of higher closed-loop bandwidths in ocular adaptive optics,�?? Opt. Express 11, 2597�??2605 (2003).
    [CrossRef] [PubMed]
  7. F. Vargas-Martin, P. M. Prieto, and P. Artal, �??Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,�?? J. Opt. Soc. Am. A 15, 2552�??2562 (1998).
    [CrossRef]
  8. L. N. Thibos, A. Bradley, and X. Hong, �??A statistical model of the aberration structure of normal, well-corrected eyes,�?? Ophthal. Physiol. Opt. 22, 427�??433 (2002).
    [CrossRef]
  9. M. K. Smolek and S. D. Klyce, �??Zernike Polynomial Fitting Fails to Represent All Visually Significant Corneal Aberrations,�?? Invest. Ophthalmol. Visual Sci. 44, 4676�??4681 (2003).
    [CrossRef]
  10. F. Roddier, Adaptive optics in astronomy, 1st ed. (Cambridge University Press, Cambridge, U.K., 1999).
    [CrossRef]
  11. G. Vdovin and P. M. Sarro, �??Flexible mirror micromachined in silicon,�?? Appl. Opt. 34, 2968�??2972 (1995).
    [CrossRef] [PubMed]
  12. C. Paterson, I. Munro, and J. C. Dainty, �??A low cost adaptive optics system using a membrane mirror,�?? Opt. Express 6, 175�??185 (2000).
    [CrossRef] [PubMed]
  13. D. A. Horsley, H. K. Park, S. P. Laut, and J. S. Werner, �??Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,�?? in Ophthalmic Technologies XV, F. Manns, P. G. Sderberg, A. Ho, B. E. Stuck, and e. M. Belkin, eds., Proc. SPIE 5688, 133�??144 (2005).
  14. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, �??Standards for reporting optical aberrations of eyes,�?? J. Refract. Surg. 18, 652�??660 (2000).
  15. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, �??Statistical variation of aberration structure and image quality in a normal population of healthy eyes,�?? J. Opt. Soc. Am. A 19, 2329�??2348 (2002).
    [CrossRef]
  16. K. M. Hampson, �??The higher-order aberrations of the human eye: relation to the pulse and effect on vision,�?? Ph.D. thesis, Imperial College, London (2004).
  17. E. Dalimier, K. M. Hampson, and J. C. Dainty, �??Effects of adaptive optics on visual performance,�?? in Imaging and Vision, e. Fionn D. Murtagh, ed., Proc. SPIE 5823 (2005).

Appl. Opt.

Invest. Ophthalmol. Visual Sci.

M. K. Smolek and S. D. Klyce, �??Zernike Polynomial Fitting Fails to Represent All Visually Significant Corneal Aberrations,�?? Invest. Ophthalmol. Visual Sci. 44, 4676�??4681 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Refract. Surg.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, �??Standards for reporting optical aberrations of eyes,�?? J. Refract. Surg. 18, 652�??660 (2000).

Ophthal. Physiol. Opt.

L. N. Thibos, A. Bradley, and X. Hong, �??A statistical model of the aberration structure of normal, well-corrected eyes,�?? Ophthal. Physiol. Opt. 22, 427�??433 (2002).
[CrossRef]

Opt. Commun.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Léna, �??Towards wide-field retinal imaging with adaptive optics,�?? Opt. Commun. 230, 225�??238 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. A. Horsley, H. K. Park, S. P. Laut, and J. S. Werner, �??Characterization for vision science applications of a bimorph deformable mirror using phase-shifting interferometry,�?? in Ophthalmic Technologies XV, F. Manns, P. G. Sderberg, A. Ho, B. E. Stuck, and e. M. Belkin, eds., Proc. SPIE 5688, 133�??144 (2005).

E. Dalimier, K. M. Hampson, and J. C. Dainty, �??Effects of adaptive optics on visual performance,�?? in Imaging and Vision, e. Fionn D. Murtagh, ed., Proc. SPIE 5823 (2005).

Other

K. M. Hampson, �??The higher-order aberrations of the human eye: relation to the pulse and effect on vision,�?? Ph.D. thesis, Imperial College, London (2004).

F. Roddier, Adaptive optics in astronomy, 1st ed. (Cambridge University Press, Cambridge, U.K., 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Actuators layout for the three mirrors considered: the 37ch OKO MMDM, the 19ch OKO, and the 35ch Bimorph. The gray area represents the optical pupil typically used. It is defined as such by the manufacturer for the 19 actuator OKO and the 35 actuator AOptix mirrors, but set by the user for the 37 actuator OKO mirror.

Fig. 2.
Fig. 2.

Schematic of the 37ch OKO mirror actuation and examples of actuator response.

Fig. 3.
Fig. 3.

Schematic of the 19ch OKO mirror actuation and examples of actuator response.

Fig. 4.
Fig. 4.

Measurement of hysteresis through the ramping of one actuator.

Fig. 5.
Fig. 5.

Schematic of the 35ch AOptix mirror actuation and examples of actuator response.

Fig. 6.
Fig. 6.

Comparison of the Zernike generation for the three mirrors in terms of pv signed wavefront produced. The first 21 polynomials are represented (piston, tip and tilt were removed).

Fig. 7.
Fig. 7.

Comparison of the Zernike generation for the three mirrors: (a) in terms of maximum signed wavefront rms and (b) in terms of residual rms error.

Fig. 8.
Fig. 8.

Residual wavefront rms error after fitting with the three mirrors over a 6 mm pupil. Piston, tip and tilt terms were removed

Fig. 9.
Fig. 9.

Residual rms wavefront error after fitting with the three mirrors. The results were averaged from calculations on the same initial wavefronts as in Fig. 8.

Fig. 10.
Fig. 10.

Comparison of residual rms obtained with an open-loop correction and a closedloop correction with the 37 actuator OKO MMDM

Fig. 11.
Fig. 11.

Closed-loop correction of a human eye with the AOptix mirror (pupil size for measurement: 4.8 mm).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

M = U M V T
Φ M = U U T Φ
c = M + Φ = V W 1 U T Φ
Z m = c lim c max U U T Z
c max = max ( abs ( M + Z ) )
Φ M = U W V T f ( V W 1 U T Φ )
f ( c i ) = { c if c lim c i c lim c lim × c i abs ( c i ) if c i < c lim or c i > c lim

Metrics