Abstract

We present a simple polarization entanglemenet source based on type-II phase-matched parametric down-conversion in periodically poled KTiOPO4. By use of noncritical phase matching in a noncollinear geometry the single-crystal source emits a cone of polarization-entangled photons. Two beams on opposite sides of the cone are selected for measurements to yield an observed flux of 820 pairs/s per mW of pump power with a two-photon fringe visibility of 96%. With this source we measure a violation of Bell’s inequality of 140 standard deviations in 160 s.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
    [CrossRef]
  2. T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
    [CrossRef] [PubMed]
  3. D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
    [CrossRef] [PubMed]
  4. P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
    [CrossRef] [PubMed]
  5. P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
    [CrossRef] [PubMed]
  6. P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
    [CrossRef]
  7. Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
    [CrossRef]
  8. C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  9. J.  Volz, C.  Kurtsiefer, H.  Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869 (2001).
    [CrossRef]
  10. G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)
  11. M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
    [CrossRef] [PubMed]
  12. C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
    [CrossRef]
  13. M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
    [CrossRef]
  14. M.  Pelton, P.  Marsden, D.  Ljunggren, M.  Tengner, A.  Karlsson, A.  Fragemann, C.  Canalias, F.  Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573 (2004).
    [CrossRef] [PubMed]
  15. J. D.  Bierlein, H.  Vanherzeele, “Potassium titanyl phosphate: properties and new applications,” J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]
  16. W.  Wiechmann, S.  Kubota, T.  Fukui, H.  Masuda, “Refractive-index temperature derivatives of potassium titanyl phosphate,” Opt. Lett. 18, 1208 (1993).
    [CrossRef] [PubMed]
  17. G.  Messin, personal communication.
  18. C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” J. Mod. Opt. 48, 1997 (2001).
  19. J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
    [CrossRef]
  20. A.  Aspect, P.  Grangier, G.  Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
    [CrossRef]

2004

M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

M.  Pelton, P.  Marsden, D.  Ljunggren, M.  Tengner, A.  Karlsson, A.  Fragemann, C.  Canalias, F.  Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573 (2004).
[CrossRef] [PubMed]

2003

G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)

2001

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

J.  Volz, C.  Kurtsiefer, H.  Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869 (2001).
[CrossRef]

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” J. Mod. Opt. 48, 1997 (2001).

2000

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

1999

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

1997

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

1995

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

1994

P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
[CrossRef] [PubMed]

1993

1989

1982

A.  Aspect, P.  Grangier, G.  Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[CrossRef]

1969

J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
[CrossRef]

Appelbaum, I.

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Aspect, A.

A.  Aspect, P.  Grangier, G.  Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[CrossRef]

Barbieri, M.

M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

Berglund, A. J.

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

Bierlein, J. D.

Bouwmeester, D.

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

Canalias, C.

Chekhova, M. V.

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

Chiao, R. Y.

P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
[CrossRef] [PubMed]

Clauser, J. F.

J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
[CrossRef]

De Martini, F.

M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)

Di Nepi, G.

M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)

Eberhard, P. H.

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
[CrossRef] [PubMed]

Eibl, M.

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

Fiorentino, M.

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

Fragemann, A.

Fukui, T.

Giorgi, G.

G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)

Grangier, P.

A.  Aspect, P.  Grangier, G.  Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[CrossRef]

Holt, R. A.

J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
[CrossRef]

Horne, M. A.

J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
[CrossRef]

Jennewein, T.

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

Karlsson, A.

Kim, Y. H.

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

Kubota, S.

Kuklewicz, C. E.

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Kulik, S. P.

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

Kurtsiefer, C.

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

J.  Volz, C.  Kurtsiefer, H.  Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869 (2001).
[CrossRef]

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” J. Mod. Opt. 48, 1997 (2001).

Kwiat, P. G.

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
[CrossRef] [PubMed]

Laurell, F.

Ljunggren, D.

Marsden, P.

Masuda, H.

Mataloni, P.

M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)

Mattle, K.

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Messin, G.

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

G.  Messin, personal communication.

Naik, D. S.

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

Oberparleiter, M.

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” J. Mod. Opt. 48, 1997 (2001).

Pan, J.-W.

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

Pelton, M.

Peterson, C. G.

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

Roger, G.

A.  Aspect, P.  Grangier, G.  Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[CrossRef]

Rubin, M. H.

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

Sergienko, A. V.

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Shih, Y.

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Shimony, A.

J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
[CrossRef]

Simon, C.

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

Steinberg, A. M.

P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
[CrossRef] [PubMed]

Tengner, M.

Vanherzeele, H.

Volz, J.

J.  Volz, C.  Kurtsiefer, H.  Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869 (2001).
[CrossRef]

Waks, E.

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Weihs, G.

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

Weinfurter, H.

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

J.  Volz, C.  Kurtsiefer, H.  Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869 (2001).
[CrossRef]

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” J. Mod. Opt. 48, 1997 (2001).

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

White, A. G.

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Wiechmann, W.

Wong, F. N. C.

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

Zeilinger, A.

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J.  Volz, C.  Kurtsiefer, H.  Weinfurter, “Compact all-solid-state source of polarization-entangled photon pairs,” Appl. Phys. Lett. 79, 869 (2001).
[CrossRef]

J. Mod. Opt.

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “Generation of correlated photon pairs in type-II parametric down conversion—revisited,” J. Mod. Opt. 48, 1997 (2001).

J. Opt. Soc. Am. B

Laser Physics

G.  Giorgi, G.  Di Nepi, P.  Mataloni, F.  De Martini, “A high brightness parametric source of entangled photon states,” Laser Physics 13, 350 (2003)

Nature

D.  Bouwmeester, J.-W.  Pan, K.  Mattle, M.  Eibl, H.  Weinfurter, A.  Zeilinger, “Experimental quantum teleportation,” Nature 390, 575 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

C. E.  Kuklewicz, M.  Fiorentino, G.  Messin, F. N. C.  Wong, J. H.  Shapiro, “High-flux source of polarization entangled photons from a periodically-poled KTiOPO4 parametric downconverter,” Phys. Rev. A 69, 013807 (2004).
[CrossRef]

M.  Fiorentino, G.  Messin, C. E.  Kuklewicz, F. N. C.  Wong, J. H.  Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Phys. Rev. A 69, 041801(R) (2004).
[CrossRef]

P. G.  Kwiat, P. H.  Eberhard, A. M.  Steinberg, R. Y.  Chiao, “Proposal for a loophole-free Bell inequality experiment,” Phys. Rev. A 49, 3209 (1994).
[CrossRef] [PubMed]

P. G.  Kwiat, E.  Waks, A. G.  White, I.  Appelbaum, P. H.  Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773 (1999).
[CrossRef]

Y. H.  Kim, M. V.  Chekhova, S. P.  Kulik, M. H.  Rubin, Y.  Shih, “Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion,” Phys. Rev. A 63, 062301 (2001).
[CrossRef]

C.  Kurtsiefer, M.  Oberparleiter, H.  Weinfurter, “High-efficiency entangled photon pair collection in type-II parametric fluorescence,” Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Phys. Rev. Lett.

M.  Barbieri, F.  De Martini, G.  Di Nepi, P.  Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92, 177901 (2004).
[CrossRef] [PubMed]

P. G.  Kwiat, K.  Mattle, H.  Weinfurter, A.  Zeilinger, A. V.  Sergienko, Y.  Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337 (1995).
[CrossRef] [PubMed]

T.  Jennewein, C.  Simon, G.  Weihs, H.  Weinfurter, A.  Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. 84, 4729 (2000)
[CrossRef] [PubMed]

D. S.  Naik, C. G.  Peterson, A. G.  White, A. J.  Berglund, P. G.  Kwiat, “Entangled state quantum cryptography: eavesdropping on the Ekert protocol,” Phys. Rev. Lett. 84, 4733 (2000).
[CrossRef] [PubMed]

J. F.  Clauser, M. A.  Horne, A.  Shimony, R. A.  Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969)
[CrossRef]

A.  Aspect, P.  Grangier, G.  Roger, “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken-experiment: a new violation of Bell’s inequalities,” Phys. Rev. Lett. 49, 91 (1982).
[CrossRef]

Other

G.  Messin, personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Definition of angles δ and ϕ to denote the direction of wave vectors. The axes of reference coincide with the crystal’s principal axes, z is the direction along which the ferroelectric domains are oriented. The pump propagates along x and is polarized along y. For collinear down-conversion signal and idler are polarized along y and z, respectively.

Fig. 2.
Fig. 2.

Plot of phase-matched wavelengths versus external propagation angle δ for signal (solid blue) and idler (dashed red), calculated for ϕ=0. Operating condition: collinear frequency-degenerate signal and idler at δ=0. Green line represents the degenerate wavelength equal to 2λp =797.2 nm.

Fig. 3.
Fig. 3.

Plot of phase-matched wavelengths versus external propagation angle δ for signal (solid blue) and idler (dashed red), calculated for ϕ=0. Operating condition: noncollinear frequency-degenerate signal and idler in two overlapping cones. Green line represents the degenerate wavelength equal to 2λp =797.2 nm.

Fig. 4.
Fig. 4.

External propagation angles for degenerate down-converted signal (λs =2λp =797.2 nm). Operating conditions: (a) collinear output T=35.65°C, (b) noncollinear output cone with ~14 mrad full divergence T=34.7°C, and (c) noncollinear output cone with ~24 mrad full divergence T=32.8°C. Propagation cones are slightly flattened on the sides due to crystal birefringence.

Fig. 5.
Fig. 5.

Snapshots (in false colors) of (a) signal and (b) idler down-converted photons taken with a CCD camera. Images were taken with a 10-mm-long PPKTP crystal (9 µm poling period) kept at a temperature of 22°C and pumped with a 398.54-nm continuous-wave pump. Images were taken with a 0.11-nm interference filter centered around the degenerate wavelength of 797.08 nm; exposure time: 20 s. Ring diameters are ~3.6 mm corresponding to a full angle aperture of ~24 mrad.

Fig. 6.
Fig. 6.

Schematic of experimental setup used to verify polarization entanglement. CC, compensating crystal; PA, polarization analyzer composed of a half-wave plate and a polarizer; IF, 1-nm interference filter centered at 797 nm.

Fig. 7.
Fig. 7.

Coincidence counts for the polarization-entangled triplet state versus analyzer angle θ A in arm A for analyzer angle θ B in arm B set to 0° (solid triangles), 45° (open diamonds), 90° (open circles) and -45° (solid squares). Each data point is the result of an average over 10 s and the curves are best fits to the data. Pump power, 5 mW; iris diameter, 1 mm; 1-nm interference filter centered at 797 nm.

Fig. 8.
Fig. 8.

Plot of visibility V + B =+45°) versus iris diameter for output triplet state. Inset: coincidence counts/s per mW of pump power versus iris diameter. A 1-nm interference filter centered at 797 nm was used.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ω p = ω s + ω i ,
k p = k s + k i ,
k j = 2 π n j ( T , λ j , δ j , ϕ j ) λ j
k p = k s + k i + 2 π Λ x .
n p T T = 20 ° C = 28 × 10 6 ° C .
C ( θ A ) = A 1 sin 2 ( θ A θ B ) + A 2 ,
ψ = ( H A V B + V A H B ) 2 ,

Metrics