Abstract

We demonstrate how a Y-branched optical waveguide can be used for microparticle sorting. Polystyrene microparticles, optically guided in the waveguide’s evanescent field, are directed down the desired, more strongly illuminated, output branch. The output of a fibre laser at a wavelength of 1066 nm is coupled to the waveguide by direct butting. The power distribution between the two output branches is selected by the relative position of the fibre to the waveguide input facet. This provides a simple method for reliable particle sorting with very high probability of success under appropriate conditions. The method can be easily combined with other particle manipulation techniques of interest for micro total analysis systems of the future.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
    [CrossRef]
  2. T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
    [CrossRef]
  3. G. Blankenstein and U. D. Larsen, “Modular concept of a laboratory on a chip for chemical and biochemical analysis,” Biosensors & Bioelectronics 13, 427–438 (1997).
    [CrossRef]
  4. H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sensors and Actuators B 92, 315–325 (2003).
    [CrossRef]
  5. S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290, 1536–1540 (2000).
    [CrossRef] [PubMed]
  6. T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
    [CrossRef]
  7. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
    [CrossRef] [PubMed]
  8. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
    [CrossRef]
  9. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [CrossRef] [PubMed]
  10. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772–774 (1992).
    [CrossRef] [PubMed]
  11. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
    [CrossRef] [PubMed]
  12. T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
    [CrossRef]
  13. L.N. Ng, M.N. Zervas, and J.S. Wilkinson, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 761993–1995 (2000).
    [CrossRef]
  14. L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
    [CrossRef]
  15. K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
    [CrossRef]

2004 (1)

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

2003 (6)

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sensors and Actuators B 92, 315–325 (2003).
[CrossRef]

T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
[CrossRef]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef] [PubMed]

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

2002 (2)

T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
[CrossRef]

L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
[CrossRef]

2000 (3)

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290, 1536–1540 (2000).
[CrossRef] [PubMed]

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

L.N. Ng, M.N. Zervas, and J.S. Wilkinson, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 761993–1995 (2000).
[CrossRef]

1997 (1)

G. Blankenstein and U. D. Larsen, “Modular concept of a laboratory on a chip for chemical and biochemical analysis,” Biosensors & Bioelectronics 13, 427–438 (1997).
[CrossRef]

1996 (1)

1992 (1)

Andersson, H.

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sensors and Actuators B 92, 315–325 (2003).
[CrossRef]

Blankenstein, G.

G. Blankenstein and U. D. Larsen, “Modular concept of a laboratory on a chip for chemical and biochemical analysis,” Biosensors & Bioelectronics 13, 427–438 (1997).
[CrossRef]

Daria, V. R.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
[CrossRef]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Eriksen, R. L.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
[CrossRef]

Friis, P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Glükstad, J.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
[CrossRef]

Goranovic, G.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Grujic, K.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Hellesø, O. G.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Hole, J.P.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Horiike, Y.

T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
[CrossRef]

Ichiki, T.

T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
[CrossRef]

Kawata, S.

Kutter, J. P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Larsen, U. D.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

G. Blankenstein and U. D. Larsen, “Modular concept of a laboratory on a chip for chemical and biochemical analysis,” Biosensors & Bioelectronics 13, 427–438 (1997).
[CrossRef]

Luff, B.J.

L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Matsue, T.

T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
[CrossRef]

Ng, L.N.

L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
[CrossRef]

L.N. Ng, M.N. Zervas, and J.S. Wilkinson, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 761993–1995 (2000).
[CrossRef]

Nishizawa, M.

T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
[CrossRef]

Ogata, S.

T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
[CrossRef]

Perch-Nielsen, I. R.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Poulsen, C. R.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Quake, S. R.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290, 1536–1540 (2000).
[CrossRef] [PubMed]

Rodrigo, P. J.

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
[CrossRef]

Scherer, A.

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290, 1536–1540 (2000).
[CrossRef] [PubMed]

Shinbashi, S.

T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
[CrossRef]

Sia, S. K.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef] [PubMed]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Sugiura, T.

Takahashi, T.

T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
[CrossRef]

Tanaka, T.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

Tani, T.

Telleman, P.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Ujiie, T.

T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
[CrossRef]

van den Berg, A.

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sensors and Actuators B 92, 315–325 (2003).
[CrossRef]

Whitesides, G. M.

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef] [PubMed]

Wilkinson, J. S.

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Wilkinson, J.S.

L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
[CrossRef]

L.N. Ng, M.N. Zervas, and J.S. Wilkinson, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 761993–1995 (2000).
[CrossRef]

Wolff, A.

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Yamamoto, S.

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

Zervas, M.N.

L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
[CrossRef]

L.N. Ng, M.N. Zervas, and J.S. Wilkinson, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 761993–1995 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

T. Tanaka and S. Yamamoto, “Optically induced propulsion of small particles in an evanescent field of higher propagation mode in a multimode channeled waveguide,” Appl. Phys. Lett. 77, 3131–3133 (2000).
[CrossRef]

L.N. Ng, M.N. Zervas, and J.S. Wilkinson, “Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide,” Appl. Phys. Lett. 761993–1995 (2000).
[CrossRef]

Biosensors & Bioelectronics (1)

G. Blankenstein and U. D. Larsen, “Modular concept of a laboratory on a chip for chemical and biochemical analysis,” Biosensors & Bioelectronics 13, 427–438 (1997).
[CrossRef]

Electrochem. Commun. (1)

T. Takahashi, S. Ogata, M. Nishizawa, and T. Matsue, “A valveless switch for microparticle sorting with laminar flow streams and electrophoresis perpendicular to the direction of fluid stream,” Electrochem. Commun. 5, 175–177 (2003).
[CrossRef]

Electrophoresis (1)

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24, 3563–3576 (2003).
[CrossRef] [PubMed]

J. Photopolymer Science and Techn. (1)

T. Ichiki, S. Shinbashi, T. Ujiie, and Y. Horiike, “Microchip technologies for the analysis of biological cells,” J. Photopolymer Science and Techn. 15, 487–492 (2002).
[CrossRef]

Lab Chip (1)

A. Wolff, I. R. Perch-Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, and P. Telleman, “Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,” Lab Chip 3, 22–27 (2003).
[CrossRef]

Nature (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

L.N. Ng, B.J. Luff, M.N. Zervas, and J.S. Wilkinson, “Propulsion of gold nanoparticles on optical waveguides,” Opt. Commun. 208117–124 (2002).
[CrossRef]

K. Grujic, O. G. Hellesø, J. S. Wilkinson, and J.P. Hole, “Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass,” Opt. Commun. 239, 227–235 (2004).
[CrossRef]

Opt. Lett. (2)

Proceedings of SPIE (1)

P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glükstad, “Interactive light-powered lab-on-a-chip: simultaneous actuation of microstructures by optical manipulation,” Proceedings of SPIE 5119, 54–59 (2003).
[CrossRef]

Science (1)

S. R. Quake and A. Scherer, “From micro- to nanofabrication with soft materials,” Science 290, 1536–1540 (2000).
[CrossRef] [PubMed]

Sensors and Actuators B (1)

H. Andersson and A. van den Berg, “Microfluidic devices for cellomics: a review,” Sensors and Actuators B 92, 315–325 (2003).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (2042 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup used for particle sorting. (b) Diagram of the waveguide junction region.

Fig. 2.
Fig. 2.

Output powers of the upper and lower branches of the Y-branched waveguide as a function of the fibre position relative to the waveguide input facet. Fibre output power was about 165 mW.

Fig. 3.
Fig. 3.

Particle distribution between the upper and the lower waveguide branch with respect to the output power of the two branches at the time when the particle is in the junction region. Fibre output power was about 165 mW.

Fig. 4.
Fig. 4.

Output power of the upper and the lower branches of the Y-branched waveguide as the fibre is flipped between the two chosen positions. Fibre output power was about 165 mW.

Fig. 5.
Fig. 5.

Movie (2.0 MB) of the sorting of polystyrene microspheres above a Y-branched waveguide. The aspect ratio has been changed for convenience, thus the spheres appear elliptical.

Metrics