Abstract

Multi-energy and chaotic pulse energy output from a continuously pumped regenerative amplifier is observed for dumping rates around the inverse upper state lifetime of the gain medium. The relevant regimes of operation are analyzed numerically and experimentally in a diode-pumped Yb:glass regenerative amplifier. The boundaries between stable and unstable pulsing are identified and stability criteria in dependence on the amplifier gate length and pump power are discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Yoshida, E. Ishii, R. Kodama, H. Fujita, Y. Kitagawa, Y. Izawa, and T. Yamanaka,�?? High-power and high-contrast optical parametric chirped pulse amplification in beta �??BaB2O4 crystal,�?? Opt. Lett. 28, 257-259.(2003).
    [CrossRef] [PubMed]
  2. V. Petrov, F. Noack, F. Rotermund, V. Pasiskevicius, A. Fragemann, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, �??Efficient all-diode-pumped double stage femtosecond optical parametric chirped pulse amplification at 1-kHz with periodically poled KTiOPO4,�?? Jpn. J. Appl. Phys. 42, L1327-1329 (2003).
    [CrossRef]
  3. C. Horvath, A. Braun, H. Liu, T. Juhasz, and G. Mourou, �??Compact directly diode-pumped femtosecond Nd:glass chirped-pulse-amplification laser system,�?? Opt. Lett. 22, 1790-1792 (1997).
    [CrossRef]
  4. W. H. Lowdermilk, and J. E. Murray, �??The multipass amplifier: Theory and numerical analysis,�?? J. Appl. Phys. 51, 2436-2444 (1980).
    [CrossRef]
  5. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, �??Ultrafast ytterbium-doped bulk lasers and laser amplifiers,�?? Appl. Phys. B 69, 3-17 (1999).
    [CrossRef]
  6. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, U. Keller, �??Diode-pumped thin-disk Yb:YAG regenerative amplifier, �?? Appl. Phys. B 65, 423-426 (1997).
    [CrossRef]
  7. H. Liu, S. Biswal, J. Paye, J. Nees, G. Mourou, C. Hönninger, and U. Keller, �??Directly diode-pumped millijoule subpicosecond Yb:glass regenerative amplifier,�?? Opt. Lett. 24, 917-919 (1999)
    [CrossRef]
  8. J. Briggs, and F. D. Peat, Turbulent Mirror (Harper & Row, Publishers Inc.,1989).
  9. T.R. Schibli, K.E. Robinson, U. Morgner, S. Mohr, D. Kopf, F.X. Kärtner, �??Control of Q-switching instabilities in passively mode-locked lasers,�?? Trends in Optics and Photonics 68, 498-504, Springer 2002

Appl. Phys. B (2)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, �??Ultrafast ytterbium-doped bulk lasers and laser amplifiers,�?? Appl. Phys. B 69, 3-17 (1999).
[CrossRef]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, U. Keller, �??Diode-pumped thin-disk Yb:YAG regenerative amplifier, �?? Appl. Phys. B 65, 423-426 (1997).
[CrossRef]

J. Appl. Phys. (1)

W. H. Lowdermilk, and J. E. Murray, �??The multipass amplifier: Theory and numerical analysis,�?? J. Appl. Phys. 51, 2436-2444 (1980).
[CrossRef]

Jpn. J. Appl. Phys. (1)

V. Petrov, F. Noack, F. Rotermund, V. Pasiskevicius, A. Fragemann, F. Laurell, H. Hundertmark, P. Adel, and C. Fallnich, �??Efficient all-diode-pumped double stage femtosecond optical parametric chirped pulse amplification at 1-kHz with periodically poled KTiOPO4,�?? Jpn. J. Appl. Phys. 42, L1327-1329 (2003).
[CrossRef]

Opt. Lett. (3)

Trends in Optics and Photonics (1)

T.R. Schibli, K.E. Robinson, U. Morgner, S. Mohr, D. Kopf, F.X. Kärtner, �??Control of Q-switching instabilities in passively mode-locked lasers,�?? Trends in Optics and Photonics 68, 498-504, Springer 2002

Other (1)

J. Briggs, and F. D. Peat, Turbulent Mirror (Harper & Row, Publishers Inc.,1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic set-up of the RA, and (b) an illustration of the relevant time constants: the gating time TG, the round trip time TR, and the dumping rate is defined by TD1.

Fig. 2.
Fig. 2.

Calculated bifurcation diagram (main graph) in dependence on the gate length at a dumping rate of TD1=10kHz, and a small signal gain of g0=0.3. For any gate length eleven subsequent pulse energies are plotted. The inlay illustrates the actual sequence of the dumped pulse energies at an arbitrarily chosen gate length in the P2 regime.

Fig. 3.
Fig. 3.

Illustration of the interplay of gain and pulse energy during the low-Q and high-Q cycles in the case of a P2 state. The duration of the low-Q phase is not drawn to scale.

Fig. 4.
Fig. 4.

Maximum pulse energy difference in dependence on the dumping frequency at g0=0.3. Zero energy difference means stable P1 state.

Fig. 5.
Fig. 5.

Numerically obtained normalized intra-cavity energy during a high-Q phase in the single-energy (regular) regime at TD1=0.4kHz and g0=0.3.

Fig. 6.
Fig. 6.

Experimental setup of the Yb:glass RA; TFP: thin film polarizer; λ/4: quarter wave plate; EOM: electro-optical Pockels-cell.

Fig. 7.
Fig. 7.

Experimentally obtained intra-cavity energy curves in the chaotic regime at TD1=10kHz and PP=5.4W. (200 curves of consecutive dumping cycles are displayed).

Fig. 8.
Fig. 8.

Bifurcation diagrams for the pump power of (a) Pp=5.4W, (b) Pp=5.1W, and (c) Pp=4.7W at the dumping rate of TD1=10kHz.

Fig. 9.
Fig. 9.

Bifurcation gate length (a) in dependence on the pump power and (b) in dependence on the dumping frequency.

Fig. 10.
Fig. 10.

Bifurcation diagrams for the dumping rates (a) TD1=1kHz, (b) TD1=4kHz, and (c) TD1=7kHz at the pump power Pp=5.4W.

Tables (1)

Tables Icon

Table 1. Defining parameters of the Yb:glass RA:

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g t = g 0 g τ L
g 2 = g 0 + ( g 1 g 0 ) e ( T D T G τ L ) .
g t = g 0 g τ L g E E sat T R
E t = E T R ( g l )

Metrics