Abstract

The design, fabrication, and measurement of photonic-band-gap (PBG) waveguides, resonators and their coupled elements in two-dimensional photonic crystal (PhC) slabs have been investigated. We have studied various loss mechanisms in PBG waveguides and have achieved a very low propagation loss (~1 dB/mm). For these waveguides, we have observed a large group delay (>100 ps) by time-domain measurement. As regards PBG resonators, we realize very high-Q and small volume resonators in PhC slabs by appropriate design. Finally, we demonstrate various forms of coupled elements of waveguides and resonators: 2-port resonant-tunneling transmission devices, 4-port channel-drop devices using the slow light mode, and 3-port channel-drop devices using the resonant-tunneling process.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals (Princeton University Press, 1995).
  3. S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780 (1999).
    [CrossRef]
  4. I. Yokohama, M. Notomi, A. Shinya, C. Takahashi, and T. Tamamura, �??Two-dimensional Si photonic crystals with 0.2-µm thickness on oxide using SOI substrates,�?? in Tech. Digest of Fifth Optoelectronics and Communication Conference (OECC 2000), 42-43 (2000).
  5. C. Takahashi, J. Takahashi, M. Notomi, and I. Yokohama, "Accurate dry etching with fluorinated gas for two-dimensional Si photonic crystals" in 2000 Fall Meeting of Materials Research Society (MRS Proceedings, vol. 637, E1.8, 2000).
  6. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, "Single-mode transmission within the photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 243-244 (2001).
    [CrossRef]
  7. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, �??Structural tuning of guiding modes of line-defect waveguides of SOI photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736-742 (2002).
    [CrossRef]
  8. E. Kuramochi, A. Shinya, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, and K. Yamada. "Low propagation loss Si-based photonic crystal slab waveguides," in International Workshop on Photonic Electromagnetic Structures (PECS), Kyoto, 2004.
  9. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada and H. Morita, "Low loss mode size converter from 0.3 µm square Si wire waveguides to single mode fibers," Electron. Lett. 38, 1669-1670 (2002).
    [CrossRef]
  10. A. Shinya, M. Notomi, E. Kuramochi, T. Shoji, T. Watanabe, T. Tsuchizawa, K. Yamada, and H. Morita, "Functional components in SOI photonic crystal slabs," Proc. SPIE 5000, 21, 104-117 (2003).
    [CrossRef]
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  12. L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-596 (1999).
    [CrossRef]
  13. M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef] [PubMed]
  14. S.G. Johnson, A. Mekis, S. Fan, and J.D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
    [CrossRef]
  15. H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, Y-H. Lee, and J-S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
    [CrossRef]
  16. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
    [CrossRef]
  17. H-Y. Ryu, M. Notomi, and Y-H. Lee, " High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  18. Y. Akahane, T. Asano, B.S. Song, and S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944 (2003).
    [CrossRef] [PubMed]
  19. S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in 2003 IEEE LEOS Annual Meeting Conference Proceedings (LEOS 2003), 214-215 (2003).
  20. C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron., 35, 1322 -1331 (1999).
    [CrossRef]
  21. M. Notomi, A. Shinya, E. Kuramochi, S. Mitsugi, H-Y. Ryu, T. Kawabata, T. Tsuchizawa, T. Watanabe, T Shoji, and K. Yamada, "Photonic-band-gap waveguides and resonators in SOI Photonic crystal slabs," to be published in IEICE Trans. Electron. March issue, (2004).
  22. Y. Xu, Y. Li, R.K. Lee, and A. Yariv, �??Scattering-theory analysis of waveguide-resonator coupling,�?? Phys. Rev. E62, 7389-7404 (2000).
  23. K. Inoshita and T. Baba, �??Lasing at bend, branch and intersection of photonic crystal waveguides,�?? Electron. Lett., 39, 844-846 (2003).
    [CrossRef]
  24. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, �??Channel drop tunneling through localized states,�?? Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  25. A. Shinya, M. Notomi, S. Mitsugi, E. Kuramochi, T. Kawabata, S. Kondo, T. Watanabe, and T. Tsuchizawa, "Photonic crystal devices combining width-tuned waveguides and cavities," International Workshop on Photonic Electromagnetic Structures, Kyoto, 2004.

Appl. Phys. Lett. (3)

S.G. Johnson, A. Mekis, S. Fan, and J.D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001).
[CrossRef]

H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, Y-H. Lee, and J-S. Kim, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002).
[CrossRef]

H-Y. Ryu, M. Notomi, and Y-H. Lee, " High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Electron Lett. (1)

K. Inoshita and T. Baba, �??Lasing at bend, branch and intersection of photonic crystal waveguides,�?? Electron. Lett., 39, 844-846 (2003).
[CrossRef]

Electron. Lett. (2)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, "Single-mode transmission within the photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 243-244 (2001).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada and H. Morita, "Low loss mode size converter from 0.3 µm square Si wire waveguides to single mode fibers," Electron. Lett. 38, 1669-1670 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, �??Structural tuning of guiding modes of line-defect waveguides of SOI photonic crystal slabs,�?? IEEE J. Quantum Electron. 38, 736-742 (2002).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002).
[CrossRef]

C. Manolatou, M.J. Khan, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron., 35, 1322 -1331 (1999).
[CrossRef]

IEEE LEOS 2003 (1)

S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in 2003 IEEE LEOS Annual Meeting Conference Proceedings (LEOS 2003), 214-215 (2003).

IEICE Trans. Electron. (1)

M. Notomi, A. Shinya, E. Kuramochi, S. Mitsugi, H-Y. Ryu, T. Kawabata, T. Tsuchizawa, T. Watanabe, T Shoji, and K. Yamada, "Photonic-band-gap waveguides and resonators in SOI Photonic crystal slabs," to be published in IEICE Trans. Electron. March issue, (2004).

MRS Proceedings (1)

C. Takahashi, J. Takahashi, M. Notomi, and I. Yokohama, "Accurate dry etching with fluorinated gas for two-dimensional Si photonic crystals" in 2000 Fall Meeting of Materials Research Society (MRS Proceedings, vol. 637, E1.8, 2000).

Nature (2)

L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-596 (1999).
[CrossRef]

Y. Akahane, T. Asano, B.S. Song, and S. Noda, "High-Q photonic nanocavity in two-dimensional photonic crystal," Nature 425, 944 (2003).
[CrossRef] [PubMed]

OECC 2000 (1)

I. Yokohama, M. Notomi, A. Shinya, C. Takahashi, and T. Tamamura, �??Two-dimensional Si photonic crystals with 0.2-µm thickness on oxide using SOI substrates,�?? in Tech. Digest of Fifth Optoelectronics and Communication Conference (OECC 2000), 42-43 (2000).

PECS 2004 (1)

E. Kuramochi, A. Shinya, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, and K. Yamada. "Low propagation loss Si-based photonic crystal slab waveguides," in International Workshop on Photonic Electromagnetic Structures (PECS), Kyoto, 2004.

Photonic Electromagnetic Structures 2004 (1)

A. Shinya, M. Notomi, S. Mitsugi, E. Kuramochi, T. Kawabata, S. Kondo, T. Watanabe, and T. Tsuchizawa, "Photonic crystal devices combining width-tuned waveguides and cavities," International Workshop on Photonic Electromagnetic Structures, Kyoto, 2004.

Phys. Rev. B (1)

S.G. Johnson, S. Fan, P.R. Villeneuve, J. D. Joannopoulos, and L.A. Kolodziejski, "Guided modes in photonic-crystal slabs," Phys. Rev. B 60, 5751-5780 (1999).
[CrossRef]

Phys. Rev. E (1)

Y. Xu, Y. Li, R.K. Lee, and A. Yariv, �??Scattering-theory analysis of waveguide-resonator coupling,�?? Phys. Rev. E62, 7389-7404 (2000).

Phys. Rev. Lett. (4)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, �??Channel drop tunneling through localized states,�?? Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

M.S. Bigelow, N.N. Lepeshkin, and R.W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Shinya, M. Notomi, E. Kuramochi, T. Shoji, T. Watanabe, T. Tsuchizawa, K. Yamada, and H. Morita, "Functional components in SOI photonic crystal slabs," Proc. SPIE 5000, 21, 104-117 (2003).
[CrossRef]

Other (1)

J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals (Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Propagation loss measurement for single-mode PBG waveguides in SiO2-clad and air-clad PhCs. (b) Schematic diagram of an adiabatic mode connector, which consists of a spot-size converter and a mode-profile converter.

Fig. 2.
Fig. 2.

Time-domain measurement of group delay dispersion in PBG waveguides in SOI PhC slabs. (a) 0.65W waveguide in SiO2-clad PhCs. (b) 1.0W waveguides in air-clad PhCs.

Fig. 3.
Fig. 3.

Hexapole cavity: (a) structural design, (b) field distribution in the real space (r=0.35a, r m=0.26a), (c) field distribution in the k space (r=0.35a, r m=0.26), (d) Q and Vm versus the resonant frequencies.

Fig. 4.
Fig. 4.

Short line-defect-like mode: (a) 2-point cavity (L=2). Shaded holes are shifted in the outward direction to increase Q. (b) 3-point cavity (L=3). (c) Q and Vm versus the defect length.

Fig. 5.
Fig. 5.

Two-port resonant tunneling transmission filter: (a) Structural design. Shaded holes are shifted in the outward direction to increase Q. (b) Measured transmission spectra for a resonant tunneling filter and a reference PhC waveguide without a cavity.

Fig. 6.
Fig. 6.

Resonant-tunneling filter using the mode gap in the width-varied waveguides: (a) structural design. (b) Measured transmission spectrum around the resonant wavelength for the barrier width of Nb=2. (c) Measured transmission spectrum for Nb=3. The samples are fabricated in SOI PhC slabs with SiO2 and polymer cladding having adiabatic mode connectors (described in 2.1).

Fig. 7.
Fig. 7.

Four-port channel drop filters using the slow light mode in 1.0 W waveguides: (a) structural design, (b) measured transmission spectra for the drop line and the bus line (through).

Fig. 8.
Fig. 8.

Three-port resonant-tunneling channel drop filter: (a) basic configuration to explain the operation principle. (b) Simulated transmission of (a). (c) Structural design of the cascaded multi-channel drop filter using the resonant tunneling process.

Metrics