Abstract

Integral videography (IV) is an animated extension of integral photography. Despite IV’s many advantages, the quality of its spatial images has thus far been poor; the pixel pitch of the display and the lens pitch are considered to be the main factors affecting the IV image format. Our solution for increasing pixel density is to use multiple projectors to create a high-resolution image and project the resultant image onto a small screen by using long-zoom-lens projection optics. We manufactured a lens array for the display device, and here we present experimental results on using two SXGA projectors. The pixel pitch and lens pitch of the new display are 85 µm and 1.016 mm, respectively. The multiprojector IV display device has a spatial resolution of approximately 1, 2, and 3 mm for image depths of 10, 35, and 60 mm, respectively, in front of and behind the lens array.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. G. Lippmann, �??Epreuves reversibles donnant la sensation du relief,�?? J. de Phys. 7, 821-825 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, �??�??Real-time pickup method for a three-dimensional image based on integral photography,�??�?? Appl. Opt. 36, 1598�??1603 (1997).
    [CrossRef] [PubMed]
  3. Y. Igarishi, H. Murata, and M. Ueda, �??3D display system using a computer generated integral photograph,�?? Japan J. Appl. Physics. 17, 1683-1684 (1978).
    [CrossRef]
  4. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, �??�??Analysis of viewing parameters for two display methods based on integral photography,�??�?? Appl. Opt. 40, 5217�??5232 (2001).
    [CrossRef]
  5. H. Liao, S. Nakajima, M. Iwahara, E. Kobayashi, I. Sakuma, N. Yahagi, and T. Dohi, �??Intra-operative real-time 3-D information display system based on integral videography,�?? in Medical Image Computing and Computer Assisted Intervention MICCAI 2001, W. Niessen and M. Viergever, eds., LNCS 2208, 392-400 (2001).
    [CrossRef]
  6. B. Lee, S. -W. Min, and B. Javidi, �??Theoretical analysis for three-dimensional integral imaging systems with double devices,�?? Appl. Opt. 41, 4856-4865 (2002).
    [CrossRef] [PubMed]
  7. J.-H. Park, S. Jung, H. Choi, and B. Lee, �??Viewing-angle-enhanced integral imaging by elemental image resizing and elemental lens switching,�?? Appl. Opt. 41, 6875-6883 (2002).
    [CrossRef] [PubMed]
  8. J. -S. Jang, and B. Javidi, �??Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,�?? Appl. Opt. 42, 1996-2002 (2003).
    [CrossRef] [PubMed]
  9. S. Jung, J.-H. Park, H. Choi, and B. Lee, �??Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,�?? Appl. Opt. 42, 2513-2520 (2003).
    [CrossRef] [PubMed]
  10. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, �??Study for wide-viewing integral photography using an aspheric Fresnel-lens array,�?? Opt. Eng. 41, 2572-2576 (2002).
    [CrossRef]
  11. S.-W. Min, B. Javidi, and B. lee, �??Enhanced three-dimensional integral imaging system by use of double display devices,�?? Appl. Opt. 42, 4186-4159 (2003).
    [CrossRef] [PubMed]
  12. J.-H. Park, S. Jung, H. Choi, and B. Lee, �??Integral imaging with multiple image planes using a uniaxial crystal plate,�?? Opt. Express 11, 1862-1873 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1862">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1862</a>
    [CrossRef] [PubMed]
  13. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, �??Analysis of resolution limitation of integral photography,�?? J. Opt. Soc. Am. 15, 2059-2065 (1998).
    [CrossRef]
  14. L. Erdmann and K. J. Gabriel, �??High-resolution digital integral photography by use of a scanning microlens array, Appl. Opt. 40, 5592-5599 (2001).
    [CrossRef]
  15. K. Li et al., �??Building and using a scalable display wall system,�?? IEEE Computer Graphics and Applications, 20, 29-37 (2000).
    [CrossRef]
  16. G. Bresnahan, R. Gasser, A. Abaravichyus, E. Brisson, and M. Walterman, �??Building a large-scale high-resolution tiled rear-projected passive stereo display system based on commodity components,�?? in Stereoscopic Displays and Virtual Reality Systems X, A. J. Woods, M. T. Bolas, J. O. Merritt, and S. A. Benton, eds., Proc. SPIE 5006, 19-30 (2003).
  17. Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, �??A study of antireflective and antistatic coating with ultrafine particles,�?? Advances Powder Technol. 7, 131-140 (1996).
    [CrossRef]
  18. J. J. Gibson, The Perception of the Visual World (Houghton Mifflin, New York, 1950).
  19. J.-S. Jang, and B. Javidi, �??Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,�?? Opt. Let. 28, 324-326 (2002).
    [CrossRef]
  20. H. Liao, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan, and M. Iwahara, T. Koike, Y. Momoi, N. Hata, I. Sakuma, T. Dohi are preparing a manuscript to be called �??Scalable high-resolution integral videography autostereoscopic display by use of seamless multiprojection.�??

Advances Powder Technol.

Y. Endo, M. Ono, T. Yamada, H. Kawamura, K. Kobara, and T. Kawamura, �??A study of antireflective and antistatic coating with ultrafine particles,�?? Advances Powder Technol. 7, 131-140 (1996).
[CrossRef]

Appl. Opt.

L. Erdmann and K. J. Gabriel, �??High-resolution digital integral photography by use of a scanning microlens array, Appl. Opt. 40, 5592-5599 (2001).
[CrossRef]

S.-W. Min, B. Javidi, and B. lee, �??Enhanced three-dimensional integral imaging system by use of double display devices,�?? Appl. Opt. 42, 4186-4159 (2003).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, �??�??Real-time pickup method for a three-dimensional image based on integral photography,�??�?? Appl. Opt. 36, 1598�??1603 (1997).
[CrossRef] [PubMed]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, �??�??Analysis of viewing parameters for two display methods based on integral photography,�??�?? Appl. Opt. 40, 5217�??5232 (2001).
[CrossRef]

B. Lee, S. -W. Min, and B. Javidi, �??Theoretical analysis for three-dimensional integral imaging systems with double devices,�?? Appl. Opt. 41, 4856-4865 (2002).
[CrossRef] [PubMed]

J.-H. Park, S. Jung, H. Choi, and B. Lee, �??Viewing-angle-enhanced integral imaging by elemental image resizing and elemental lens switching,�?? Appl. Opt. 41, 6875-6883 (2002).
[CrossRef] [PubMed]

J. -S. Jang, and B. Javidi, �??Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,�?? Appl. Opt. 42, 1996-2002 (2003).
[CrossRef] [PubMed]

S. Jung, J.-H. Park, H. Choi, and B. Lee, �??Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,�?? Appl. Opt. 42, 2513-2520 (2003).
[CrossRef] [PubMed]

IEEE Computer Graphics and Applications

K. Li et al., �??Building and using a scalable display wall system,�?? IEEE Computer Graphics and Applications, 20, 29-37 (2000).
[CrossRef]

J. de Phys.

M. G. Lippmann, �??Epreuves reversibles donnant la sensation du relief,�?? J. de Phys. 7, 821-825 (1908).

J. Opt. Soc. Am.

H. Hoshino, F. Okano, H. Isono, and I. Yuyama, �??Analysis of resolution limitation of integral photography,�?? J. Opt. Soc. Am. 15, 2059-2065 (1998).
[CrossRef]

Japan J. Appl. Physics.

Y. Igarishi, H. Murata, and M. Ueda, �??3D display system using a computer generated integral photograph,�?? Japan J. Appl. Physics. 17, 1683-1684 (1978).
[CrossRef]

LNCS, MICCAI 2001

H. Liao, S. Nakajima, M. Iwahara, E. Kobayashi, I. Sakuma, N. Yahagi, and T. Dohi, �??Intra-operative real-time 3-D information display system based on integral videography,�?? in Medical Image Computing and Computer Assisted Intervention MICCAI 2001, W. Niessen and M. Viergever, eds., LNCS 2208, 392-400 (2001).
[CrossRef]

Opt. Eng.

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, �??Study for wide-viewing integral photography using an aspheric Fresnel-lens array,�?? Opt. Eng. 41, 2572-2576 (2002).
[CrossRef]

Opt. Express

Opt. Let.

J.-S. Jang, and B. Javidi, �??Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,�?? Opt. Let. 28, 324-326 (2002).
[CrossRef]

Proc SPIE 2003

G. Bresnahan, R. Gasser, A. Abaravichyus, E. Brisson, and M. Walterman, �??Building a large-scale high-resolution tiled rear-projected passive stereo display system based on commodity components,�?? in Stereoscopic Displays and Virtual Reality Systems X, A. J. Woods, M. T. Bolas, J. O. Merritt, and S. A. Benton, eds., Proc. SPIE 5006, 19-30 (2003).

Other

J. J. Gibson, The Perception of the Visual World (Houghton Mifflin, New York, 1950).

H. Liao, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan, and M. Iwahara, T. Koike, Y. Momoi, N. Hata, I. Sakuma, T. Dohi are preparing a manuscript to be called �??Scalable high-resolution integral videography autostereoscopic display by use of seamless multiprojection.�??

Supplementary Material (2)

» Media 1: MPG (1240 KB)     
» Media 2: MPG (1333 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Principle of IV.

Fig. 2.
Fig. 2.

System configuration of multiprojector IV display.

Fig. 3.
Fig. 3.

Design and fabrication of microlens array. (a) Lens array is made of two lenticular sheets crossed at a right angle. (b) Fabricated lens array.

Fig. 4.
Fig. 4.

High-resolution multiprojection IV display device. The display includes two projectors and mirrors for optical reflection.

Fig. 5.
Fig. 5.

Schematic diagram of measuring IV image spatial resolution by projecting black and white stripes in different depths.

Fig. 6.
Fig. 6.

Measured IV image spatial resolution. The numbers mean the image depths in front of (real IV image) and behind (virtual IV image) the lens array. The green part shows the real IV image of strips arranged in Fig. 5.

Fig. 7.
Fig. 7.

Measured spatial resolutions of real and virtual IV images.

Fig. 8.
Fig. 8.

Elemental image of IV rendering results. (a) Calculated entire elemental image of human heart; (b) Enlarged image of the yellow part in (a).

Fig. 9.
Fig. 9.

(1.2MB) Movie of multiprojector IV Image (human heart) observed from different viewing directions.

Fig.10.
Fig.10.

(1.3MB) Movie of IV CT autostereoscopic animated image of human heart. The patient has a heart rate of 63 beats per minute, i.e. a cardiac cycle of 0.95s.

Tables (1)

Tables Icon

Table 1 Main specifications of multiprojection IV display

Metrics