Abstract

In this paper the guiding properties of photonic crystal fibers with a square lattice of air-holes in a silica matrix have been studied for the first time. The dispersion curves of fibers with different hole-to-hole spacing and air-hole diameter have been accurately calculated. Negative values of the dispersion parameter and the dispersion slope have been obtained with a hole-to-hole spacing of 1 µm. A comparison between fibers with square and triangular lattice has been also performed, taking into account the dispersion properties and the effective area in the wavelength range between 1200 nm and 1600 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Single-mode regime of square-lattice photonic crystal fibers

F. Poli, M. Foroni, M. Bottacini, M. Fuochi, N. Burani, L. Rosa, A. Cucinotta, and S. Selleri
J. Opt. Soc. Am. A 22(8) 1655-1661 (2005)

Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band

Shailendra K. Varshney, Takeshi Fujisawa, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 14(8) 3528-3540 (2006)

Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band

Kazuya Sasaki, Shailendra K. Varshney, Keisuke Wada, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 15(5) 2654-2668 (2007)

References

  • View by:
  • |
  • |
  • |

  1. T.M. Monro, “Tutorial - Holey fibers: fundamentals and applications,” Optical Fiber Communication Conference 2002, TuD.
  2. A. Bjarklev, “Photonic Crystal Fibers and their Applications,” European Conference on Optical Communication 2003, We3.3.
  3. P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.
  4. F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20, 1958–1962 (2003).
    [Crossref]
  5. Lin-Ping Shen, Wei-Ping Huang, and Shui-Sheng Jian, “Design of Photonic Crystal Fibers for Dispersion-Related Applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
    [Crossref]
  6. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret, and M. V. Andrés, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687.
    [Crossref] [PubMed]
  7. B. T. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. OT 42, 634–639 (2003).
    [Crossref]
  8. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., to be published (2004).
    [Crossref]
  9. K. Saitoh and M. Koshiba, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843.
    [Crossref] [PubMed]
  10. P. St. J. Russell, E. Marin, A. Díez, S. Guenneau, and A. B. Movchan, “Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,” Opt. Express 11, 2555–2560 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2555.
    [Crossref] [PubMed]
  11. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis Through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
    [Crossref]
  12. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification Properties of Er3+-Doped Photonic Crystal Fibers,” J. Lightwave Technol. 21, 782–788 (2003).
    [Crossref]
  13. B. T. Kuhlmey, R. C McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, “Microstructured optical fibers: where’s the edge?,” Opt. Express 10, 1285–1290 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1285.
    [Crossref] [PubMed]
  14. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003).
    [Crossref] [PubMed]

2003 (7)

2002 (2)

2001 (1)

Andrés, M. V.

Andrés, P.

Birks, T. A.

P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.

Bjarklev, A.

A. Bjarklev, “Photonic Crystal Fibers and their Applications,” European Conference on Optical Communication 2003, We3.3.

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., to be published (2004).
[Crossref]

C McPhedran, R.

Cucinotta, A.

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification Properties of Er3+-Doped Photonic Crystal Fibers,” J. Lightwave Technol. 21, 782–788 (2003).
[Crossref]

F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20, 1958–1962 (2003).
[Crossref]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis Through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., to be published (2004).
[Crossref]

de Sterke, C. M.

Díez, A.

Ferrando, A.

Folkenberg, J. R.

Fuochi, M.

Guenneau, S.

Hansen, K. P.

Huang, Wei-Ping

Jian, Shui-Sheng

Knight, J. C.

P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.

Koshiba, M.

Kuhlmey, B. T.

Marin, E.

Maystre, D.

Miret, J. J.

Monro, T.M.

T.M. Monro, “Tutorial - Holey fibers: fundamentals and applications,” Optical Fiber Communication Conference 2002, TuD.

Mortensen, N. A.

Movchan, A. B.

Nielsen, M. D.

Poli, F.

Renversez, G.

Roberts, P. J.

P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.

Robinson, P. A.

Russell, P. St. J.

P. St. J. Russell, E. Marin, A. Díez, S. Guenneau, and A. B. Movchan, “Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,” Opt. Express 11, 2555–2560 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2555.
[Crossref] [PubMed]

P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.

Sabert, H.

P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.

Saitoh, K.

Selleri, S.

F. Poli, A. Cucinotta, M. Fuochi, S. Selleri, and L. Vincetti, “Characterization of microstructured optical fibers for wideband dispersion compensation,” J. Opt. Soc. Am. A 20, 1958–1962 (2003).
[Crossref]

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification Properties of Er3+-Doped Photonic Crystal Fibers,” J. Lightwave Technol. 21, 782–788 (2003).
[Crossref]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis Through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., to be published (2004).
[Crossref]

Shen, Lin-Ping

Silvestre, E.

Vincetti, L.

Zoboli, M.

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Amplification Properties of Er3+-Doped Photonic Crystal Fibers,” J. Lightwave Technol. 21, 782–788 (2003).
[Crossref]

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis Through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

Appl. Opt. OT (1)

B. T. Kuhlmey, G. Renversez, and D. Maystre, “Chromatic dispersion and losses of microstructured optical fibers,” Appl. Opt. OT 42, 634–639 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey Fiber Analysis Through the Finite-Element Method,” IEEE Photon. Technol. Lett. 14, 1530–1532 (2002).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (1)

Other (4)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett., to be published (2004).
[Crossref]

T.M. Monro, “Tutorial - Holey fibers: fundamentals and applications,” Optical Fiber Communication Conference 2002, TuD.

A. Bjarklev, “Photonic Crystal Fibers and their Applications,” European Conference on Optical Communication 2003, We3.3.

P. St. J. Russell, J. C. Knight, T. A. Birks, P. J. Roberts, and H. Sabert, “Photonic crystal fibres: mastering the flow of light,” European Conference on Optical Communication 2003, We1.7.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Detail of the square-lattice PCF cross-section. (b) Comparison of the air-hole positions in the first ring for square (solid line) and triangular (dashed line) lattices.

Fig. 2.
Fig. 2.

Dispersion curves of the square-lattice PCFs with (a) Λ=1 µm, (b) Λ=2 µm and (c) Λ=3 µm for different d/Λ values in the range 0.5÷0.9.

Fig. 3.
Fig. 3.

Dispersion curves of the square-lattice PCFs with d/Λ=0.9 for different Λ values between 1 µm and 3 µm.

Fig. 4.
Fig. 4.

Comparison of the dispersion parameter and the effective area values for the square-lattice PCF and the triangular one with d/Λ=0.9 and Λ=1 µm.

Fig. 5.
Fig. 5.

Comparison of the dispersion parameter (a) and the effective area (b) values for the square-lattice PCFs and the triangular ones with d/Λ=0.5, for Λ=1 µm and Λ=3 µm.

Fig. 6.
Fig. 6.

Fundamental component of the magnetic field at 1550 nm for the square-lattice PCF (a) and the triangular one (b) with d/Λ=0.5 and Λ=3 µm.

Metrics