Abstract

Low power cw laser radiation at λ=1.32µm was coupled into a chemically etched, metalized Near-Field Scanning Optical Microscopy (NSOM) fiber probe to generate a stable microbubble in water as well as in other fluids. The microbubble, which was attached to the end face of the fiber probe, was used to trap, manipulate and mix micron sized glass, latex and fluorescent particles as well as biological material.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin,�??Optical trapping and manipulation of neutral particles using lasers,�??Proc. Natl. Acad. Sci.USA 94, 4853-4860 (1997).
    [CrossRef] [PubMed]
  2. J.-C.Meiners and S.R. Quake,�??Femtonewton force spectroscopy of single extended DNA molecules,�?? Phys. Rev. Lett. 84, 5014-5017 (2000).
    [CrossRef] [PubMed]
  3. D.T. Chiu,A. Hsiao,A. Gaggar,R.A. Garza-Lopez,O. Orwar and R.N. Zare,�??Injection of ultrasmall samples and single molecules into tapered capillaries,�?? Anal. Chem. 69, 1801-1807 (1997).
    [CrossRef] [PubMed]
  4. M.A. Paesler and P.J. Moyer,�??Near-Field Optics,�?? (J. Wiley and sons, New York 1996).
  5. R.S. Taylor and C. Hnatovsky,�??Particle trapping in 3-D using a single fiber probe with an annular light distribution,�?? Opt. Express 11, 2775-2782 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2775">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2775</a>
    [CrossRef] [PubMed]
  6. R.B. Maxwell,A.L. Gerhardt,M. Toner,M.L. Gray and M.A. Schmidt,�?? A microbubble-powered bioparticle actuator,�?? J. of Microelectromechanical Systems 12,630-640 (2003).
    [CrossRef]
  7. J.E. Fouquet,�??Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,�?? Trends Opt. Photon. 37,204-206 (2000).
  8. Chang-Jin-Kim,�??Microfluidics using the surface tension force in microscale,�?? Proc. of SPIE 4177,49-55 (2000).
    [CrossRef]
  9. S.Z. Hua,F. Sachs,D.X. Yang and H.D. Chopra,�??Microfluidic actuation using electrochemically generated bubbles,�?? Anal. Chem. 74,6392-6396 (2002).
    [CrossRef]
  10. R.H. Liu,J. Yang,M.Z. Pindera,M. Athavale and P. Grodzinski,�??Bubble-induced acoustic micromixing,�?? Lab Chip 2, 151-157 (2002).
    [CrossRef]
  11. P.E. Dyer,M.E. Khosroshahi and S.J. Tuft,�??Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,�?? Appl. Phys. B.56, 84-93 (1993).
  12. M. Frenz,G. Paltauf and H. Schmidt-Kloiber,�??Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,�?? Phys. Rev. Lett.76, 3546-3549 (1996).
    [CrossRef] [PubMed]
  13. Ton G. van Leeuwen,M.J. van der Veen,R.M. Verdaasdonk and C. Borst,�??Noncontact tissue ablation by Holmium:YSGG laser pulses in blood,�?? Lasers in Surgery and Medicine 11, 26-34 (1991).
    [CrossRef] [PubMed]
  14. H. Pratisto,M. Ith,M. Frenz and H.P. Weber,�??Infrared multiwavelength laser system for establishing a surgical delivery path through water,�?? Appl. Phys. Lett. 67, 1963-1965 (1995).
    [CrossRef]
  15. K.F. MacDonald,V.A. Fedotov,S. Pochon,B.F. Soares and N.I. Zheludev,�??Oscillating bubbles at the tips of optical fibers in liquid nitrogen,�?? Phys. Rev. E 68,027301-3 (2003).
    [CrossRef]
  16. D.W. Berry,N.R. Heckenberg and H. Rubinsztein-Dunlop,�??Effects associated with bubble formation in optical trapping,�?? J. Mod. Opt. 47, 1575-1585 (2000).
  17. Y.Xin-Cheng,L.Zhao-Lin,G.Hong-Lian,C.Bing-Ying,Z.Dao-Zhong,�??Effects of spherical aberration on optical trapping forces for Rayleigh particles,�?? Chin. Phys. Lett. 18, 432-434 (2001).
    [CrossRef]
  18. T.Pangaribuan,K. Yamada,S. Jiang,H. Ohsawa and M. Ohtsu,�??Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,�?? Jpn. J. Appl. Phys. 31, L1302-L1304 (1992).
    [CrossRef]
  19. P. Burgos,Z. Lu,A. Ianoul,C. Hnatovsky,M.-L. Viriot,L.J. Johnston and R.S. Taylor,�??Near-field scanning optical microscopy probes:a comparison of pulled and double-etched bent NSOM probes for fluorescence imaging of biological samples,�?? J. Microscopy 211, 37-47 (2003).
    [CrossRef]
  20. R.S. Taylor and C. Hnatovsky,�??High resolution index of refraction profiling of optical waveguides,�?? Proc. SPIE 4833, 811-819 (2003).
    [CrossRef]
  21. D.Sarid, Scanning Force Microscopy, (Oxford University press, Oxford, 1994).
  22. Y. Otani,Y. Matsuba,A. Osaka,�??Microbubble actuator using photothermal effect,�?? Proc. SPIE 4902, 83-86 (2002).
    [CrossRef]
  23. D.E. Yount,E.W. Gillary and D.C. Hoffman,�??A microscopic investigation of bubble formation nuclei,�?? J. Acoust. Soc. Am. 76, 1511-1521 (1984).
    [CrossRef]
  24. W. Wang,C.C. Moser and M.A. Wheatley,�??Langmuir trough study of surfactant mixtures used in the production of a new ultrasound contrast agent consisting of stabilized microbubbles,�?? J. Phys. Chem. 100, 13815-13821 (1996).
    [CrossRef]
  25. Y. Tadir,T. Ord,W.H. Wright,R.H. Asch,O. Vafa and M.W. Berns, �??Micromanipulation of sperm by a laser generated optical trap,�?? Fertility and Sterility 52, 870-873 (1989).
    [PubMed]
  26. A. Clement-Sengewald,K. Schutze,A. Ashkin,G.A. Palma,G. Kerlen and G. Brem,�??Fertilization of bovine Oocytes induced solely with combined laser microbeam and optical tweezers,�?? J. of Assisted Reproduction and Genetics 13, 259-265 (1996).
    [CrossRef]
  27. D.T. Chiu,C.F. Wilson,F. Ryttsen,A. Stromberg,C. Farre,A. Karlsson,S. Nordholm,A. Gaggar,B.P. Modi,A. Moscho,R.A. Garza-Lopez,O. Orwar and R.N. Zare,�??Chemical transformations in individual ultrasmall biomimetic containers,�?? Science 283(5409), 1892-1895 (1999).
    [CrossRef]

Anal. Chem.

D.T. Chiu,A. Hsiao,A. Gaggar,R.A. Garza-Lopez,O. Orwar and R.N. Zare,�??Injection of ultrasmall samples and single molecules into tapered capillaries,�?? Anal. Chem. 69, 1801-1807 (1997).
[CrossRef] [PubMed]

S.Z. Hua,F. Sachs,D.X. Yang and H.D. Chopra,�??Microfluidic actuation using electrochemically generated bubbles,�?? Anal. Chem. 74,6392-6396 (2002).
[CrossRef]

Appl. Phys. B

P.E. Dyer,M.E. Khosroshahi and S.J. Tuft,�??Studies of laser-induced cavitation and tissue ablation in saline using a fibre-delivered pulsed HF laser,�?? Appl. Phys. B.56, 84-93 (1993).

Appl. Phys. Lett.

H. Pratisto,M. Ith,M. Frenz and H.P. Weber,�??Infrared multiwavelength laser system for establishing a surgical delivery path through water,�?? Appl. Phys. Lett. 67, 1963-1965 (1995).
[CrossRef]

Chin. Phys. Lett.

Y.Xin-Cheng,L.Zhao-Lin,G.Hong-Lian,C.Bing-Ying,Z.Dao-Zhong,�??Effects of spherical aberration on optical trapping forces for Rayleigh particles,�?? Chin. Phys. Lett. 18, 432-434 (2001).
[CrossRef]

Fertility and Sterility

Y. Tadir,T. Ord,W.H. Wright,R.H. Asch,O. Vafa and M.W. Berns, �??Micromanipulation of sperm by a laser generated optical trap,�?? Fertility and Sterility 52, 870-873 (1989).
[PubMed]

J. Acoust. Soc. Am.

D.E. Yount,E.W. Gillary and D.C. Hoffman,�??A microscopic investigation of bubble formation nuclei,�?? J. Acoust. Soc. Am. 76, 1511-1521 (1984).
[CrossRef]

J. Microscopy

P. Burgos,Z. Lu,A. Ianoul,C. Hnatovsky,M.-L. Viriot,L.J. Johnston and R.S. Taylor,�??Near-field scanning optical microscopy probes:a comparison of pulled and double-etched bent NSOM probes for fluorescence imaging of biological samples,�?? J. Microscopy 211, 37-47 (2003).
[CrossRef]

J. Mod. Opt.

D.W. Berry,N.R. Heckenberg and H. Rubinsztein-Dunlop,�??Effects associated with bubble formation in optical trapping,�?? J. Mod. Opt. 47, 1575-1585 (2000).

J. of Assisted Reproduction and Genetics

A. Clement-Sengewald,K. Schutze,A. Ashkin,G.A. Palma,G. Kerlen and G. Brem,�??Fertilization of bovine Oocytes induced solely with combined laser microbeam and optical tweezers,�?? J. of Assisted Reproduction and Genetics 13, 259-265 (1996).
[CrossRef]

J. of Microelectromechanical Systems

R.B. Maxwell,A.L. Gerhardt,M. Toner,M.L. Gray and M.A. Schmidt,�?? A microbubble-powered bioparticle actuator,�?? J. of Microelectromechanical Systems 12,630-640 (2003).
[CrossRef]

J. Phys. Chem.

W. Wang,C.C. Moser and M.A. Wheatley,�??Langmuir trough study of surfactant mixtures used in the production of a new ultrasound contrast agent consisting of stabilized microbubbles,�?? J. Phys. Chem. 100, 13815-13821 (1996).
[CrossRef]

Jpn. J. Appl. Phys.

T.Pangaribuan,K. Yamada,S. Jiang,H. Ohsawa and M. Ohtsu,�??Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope,�?? Jpn. J. Appl. Phys. 31, L1302-L1304 (1992).
[CrossRef]

Lab Chip

R.H. Liu,J. Yang,M.Z. Pindera,M. Athavale and P. Grodzinski,�??Bubble-induced acoustic micromixing,�?? Lab Chip 2, 151-157 (2002).
[CrossRef]

Lasers in Surgery and Medicine

Ton G. van Leeuwen,M.J. van der Veen,R.M. Verdaasdonk and C. Borst,�??Noncontact tissue ablation by Holmium:YSGG laser pulses in blood,�?? Lasers in Surgery and Medicine 11, 26-34 (1991).
[CrossRef] [PubMed]

Opt. Express

R.S. Taylor and C. Hnatovsky,�??Particle trapping in 3-D using a single fiber probe with an annular light distribution,�?? Opt. Express 11, 2775-2782 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2775">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2775</a>
[CrossRef] [PubMed]

OSA TOPS Series

J.E. Fouquet,�??Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,�?? Trends Opt. Photon. 37,204-206 (2000).

Phys. Rev. E

K.F. MacDonald,V.A. Fedotov,S. Pochon,B.F. Soares and N.I. Zheludev,�??Oscillating bubbles at the tips of optical fibers in liquid nitrogen,�?? Phys. Rev. E 68,027301-3 (2003).
[CrossRef]

Phys. Rev. Lett.

M. Frenz,G. Paltauf and H. Schmidt-Kloiber,�??Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,�?? Phys. Rev. Lett.76, 3546-3549 (1996).
[CrossRef] [PubMed]

J.-C.Meiners and S.R. Quake,�??Femtonewton force spectroscopy of single extended DNA molecules,�?? Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci.USA

A. Ashkin,�??Optical trapping and manipulation of neutral particles using lasers,�??Proc. Natl. Acad. Sci.USA 94, 4853-4860 (1997).
[CrossRef] [PubMed]

Proc. of SPIE

Chang-Jin-Kim,�??Microfluidics using the surface tension force in microscale,�?? Proc. of SPIE 4177,49-55 (2000).
[CrossRef]

Proc. SPIE

Y. Otani,Y. Matsuba,A. Osaka,�??Microbubble actuator using photothermal effect,�?? Proc. SPIE 4902, 83-86 (2002).
[CrossRef]

R.S. Taylor and C. Hnatovsky,�??High resolution index of refraction profiling of optical waveguides,�?? Proc. SPIE 4833, 811-819 (2003).
[CrossRef]

Science

D.T. Chiu,C.F. Wilson,F. Ryttsen,A. Stromberg,C. Farre,A. Karlsson,S. Nordholm,A. Gaggar,B.P. Modi,A. Moscho,R.A. Garza-Lopez,O. Orwar and R.N. Zare,�??Chemical transformations in individual ultrasmall biomimetic containers,�?? Science 283(5409), 1892-1895 (1999).
[CrossRef]

Other

D.Sarid, Scanning Force Microscopy, (Oxford University press, Oxford, 1994).

M.A. Paesler and P.J. Moyer,�??Near-Field Optics,�?? (J. Wiley and sons, New York 1996).

Supplementary Material (5)

» Media 1: MOV (970 KB)     
» Media 2: MOV (1225 KB)     
» Media 3: MOV (2619 KB)     
» Media 4: MOV (13771 KB)     
» Media 5: MOV (636 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental layout.

Fig. 2.
Fig. 2.

Scanning electron microscope image of a selectively chemically etched conical tapered Fibercore Inc. probe tip showing a hollow central region.

Fig. 3.
Fig. 3.

Left: Photograph showing the pulling capability of a microbubble firmly attached to the flat fiber cladding surface. A second fiber covered with 2µm diameter glass spheres is shown to the left in this figure, Right: Picture of a microbubble just after delicately picking up a single 2µm glass sphere.

Fig. 4.
Fig. 4.

Video (970Kb) showing a ≈100µm diameter bubble “vacuum cleaning” 2µm diameter glass spheres stuck to a ≈20µm diameter fiber. The conical tip can be seen inside the bubble on the left. In this case the fiber probe was pre-etched to reduce its diameter. The picture on the right shows a number of 2µm glass particles which collected on the bottom surface of the bubble after vacuum cleaning.

Fig. 5.
Fig. 5.

Photograph of patches of agglomerated 1µm latex spheres trapped on the surface of a microbubble. The width of the image is 120µm. The video (1.2Mb) shows the fiber probe launching a bubble in a water solution containing 1µm latex spheres and the subsequent condensation of a large number of the spheres onto the bubble surface.

Fig. 6.
Fig. 6.

Video (short version 2.5Mb) showing a shower of solid 2µm diameter glass spheres converging in an initially pulsating manner from mms away onto the top surface of a ≈350µm diameter bubble which was being heated with ≈20mW of laser power coupled into the fiber probe. The spheres form a monolayer on the bubble surface. The first clip of the long version of the video (13.8Mb) shows cyclonic mixing of ≈104 microspheres on the bubble surface. When the laser was blocked the mixing stopped almost immediately. The second clip shows a ≈20µm diameter fiber being inserted into the bubble and used to remove the bubble from the fiber probe. The last clip shows that when a second bubble with glass microspheres is brought close to the fiber probe containing a bubble which is mixing other microspheres the convective flow is transfered to the second bubble to mix those trapped particles as well.

Fig. 7.
Fig. 7.

Schematic diagram showing the flow patterns which generally occured on and in the vicinity of a heated microbubble.

Fig. 8.
Fig. 8.

Video (634Kb) shows an enlargement of the two counterpropagating cyclonic flow regions on the surface of a bubble in water made visible using 1µm diameter latex spheres. The width of the image is ≈50µm.

Fig. 9.
Fig. 9.

Left: Image of a Daphnia trapped on the backside of a newly generated microbubble. Right: Image of the tiny crustacean moving away after release from the fiber probe.

Fig. 10.
Fig. 10.

(a) Photograph of a Pt-coated hemispherically tipped large core pre-etched fiber heated in air to a white hot temperature using ≈25mW of λ=1.32µm laser light coupled into the fiber probe. (b) Top view of a metalized Fibercore Inc. selectively chemically etched fiber probe in air. Approximately 30mW of laser power was coupled into the probe. A focussed ion beam was used to remove the metal coating inside a 30 µm×30 µm square region but leaving the metal on the conical structure. The heated tip glows white hot while the regions near the base of the probe are relatively cold.

Metrics