J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers : l. Misfit dislocations,” J. Cryst. Growth. 27, 118–125 (1974).
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]
N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]
Z. Zou, D. L. Huffaker, S. Csutak, and D. G. Deppe, “Ground state lasing from a quantum-dot oxideconfined vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 75, 22–24 (1999).
[Crossref]
N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]
Z. Zou, D. L. Huffaker, S. Csutak, and D. G. Deppe, “Ground state lasing from a quantum-dot oxideconfined vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 75, 22–24 (1999).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
Z. Zou, D. L. Huffaker, S. Csutak, and D. G. Deppe, “Ground state lasing from a quantum-dot oxideconfined vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 75, 22–24 (1999).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[Crossref]
D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]
D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[Crossref]
D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers : l. Misfit dislocations,” J. Cryst. Growth. 27, 118–125 (1974).
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, “Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,” Electron. Lett. 37, 225–226 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, “Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network,” IEEE Photon. Technol. Lett. 12, 125–127 (2000).
[Crossref]
D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, “Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,” J. Cryst. Growth. 221, 503–508 (2000).
[Crossref]
D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]
D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 80, 3901–3903 (2002).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, “Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,” Electron. Lett. 36, 2018–2019 (2000).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, “Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,” Jpn. J. Appl. Phys. 41, L562–L564 (2002).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, “Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,” Electron. Lett. 37, 566–567 (2001).
[Crossref]
N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003).
[Crossref]
J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, “InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,” Electron. Lett. 36, 1384–1385 (2000).
[Crossref]
Z. Zou, D. L. Huffaker, S. Csutak, and D. G. Deppe, “Ground state lasing from a quantum-dot oxideconfined vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 75, 22–24 (1999).
[Crossref]