Abstract

We describe delivery of femtosecond solitons at 800nm wavelength over five meters of hollow-core photonic bandgap fiber. The output pulses had a length of less than 300fs and an output pulse energy of around 65nJ, and were almost bandwidth limited. Numerical modeling shows that the nonlinear phase shift is determined by both the nonlinearity of air and by the overlap of the guided mode with the glass.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, �??Photonic Crystal fibers,�?? Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  2. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures,�?? Electron. Lett. 31 1941-1942 (1995).
    [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  4. D. G. Ouzounov, F.R.Ahmad , D.Muller ,N. Venkataraman, M.T. Gallagher , M.G.Thomas, J. Silcox, K.W. Koch, A.L.Gaeta, �??Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,�?? Science 301 1702-1704 (2003).
    [CrossRef] [PubMed]
  5. G.P. Agrawal, Nonlinear fiber optics, 3rd edition (Academic Press, San Diego, 2001).
  6. F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  7. G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, L. Farr, B. J. Mangan, H. Sabert, �??Properties of a hollow-core photonic bandgap fiber at 850nm wavelength,�?? Opt. Express 11 1613 �?? 1620 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613.</a>
    [CrossRef] [PubMed]
  8. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, K. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  9. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>.
    [CrossRef] [PubMed]
  10. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade and A. Mysyrowicz, �??Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,�?? J. Opt. Soc. Am. B. 14 650-660 (1997).
    [CrossRef]
  11. J. Laegsgaard, N. A. Mortenson, J. Riishede and A. Bjarklev, �??Material effects in air-guiding photonic bandgap fibers,�?? J. Opt. Soc. Am B 20 2046-2051 (2003).
    [CrossRef]
  12. J. Laegsgaard, N. A. Mortenson and A. Bjarklev, �??Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,�?? J. Opt. Soc. Am. B 20 2037-2045 (2003)
    [CrossRef]

Electron. Lett.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, �??Full 2-D photonic bandgaps in silica/air structures,�?? Electron. Lett. 31 1941-1942 (1995).
[CrossRef]

J. Opt. Soc. Am B

J. Laegsgaard, N. A. Mortenson, J. Riishede and A. Bjarklev, �??Material effects in air-guiding photonic bandgap fibers,�?? J. Opt. Soc. Am B 20 2046-2051 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Laegsgaard, N. A. Mortenson and A. Bjarklev, �??Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,�?? J. Opt. Soc. Am. B 20 2037-2045 (2003)
[CrossRef]

J. Opt. Soc. Am. B.

E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade and A. Mysyrowicz, �??Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,�?? J. Opt. Soc. Am. B. 14 650-660 (1997).
[CrossRef]

Nature

J. C. Knight, �??Photonic Crystal fibers,�?? Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borrelli, D. C. Allan, K. Koch, �??Low-loss hollow-core silica/air photonic bandgap fibre,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>.
[CrossRef] [PubMed]

G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, L. Farr, B. J. Mangan, H. Sabert, �??Properties of a hollow-core photonic bandgap fiber at 850nm wavelength,�?? Opt. Express 11 1613 �?? 1620 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613.</a>
[CrossRef] [PubMed]

Opt. Lett.

F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659-661 (1986).
[CrossRef] [PubMed]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, D. Allen, P. J. Roberts, �??Single-mode photonic bandgap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

D. G. Ouzounov, F.R.Ahmad , D.Muller ,N. Venkataraman, M.T. Gallagher , M.G.Thomas, J. Silcox, K.W. Koch, A.L.Gaeta, �??Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers,�?? Science 301 1702-1704 (2003).
[CrossRef] [PubMed]

Other

G.P. Agrawal, Nonlinear fiber optics, 3rd edition (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Measured group index and group-velocity dispersion GVD, with inset showing the fiber attenuation. The measured group index points are indicated by crosses: the line is a fit to the data points and is used to derive the dispersion curve.

Fig. 2.
Fig. 2.

(a) Sample autocorrelation traces at low (28nJ – blue curve) and high (62nJ – red curve) pulse energies. (b) Measured autocorrelation widths (FWHM) as a function of output pulse energy.

Fig. 3.
Fig. 3.

Observed output spectra for different output pulse energies.

Fig. 4.
Fig. 4.

Actual (a) and modeled (b) fiber cross-sections, showing the region around the core. (c) shows the intensity pattern of the fundamental guided mode used in the modeling of the nonlinear response.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 0 = 3.11 λ 3 D A eff 4 π 2 c n 2 τ 2
Δ n eff = P n 2 A eff
Δ n eff = P i n 2 , i A eff i

Metrics