Abstract

The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10× higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina and F. Coppinger, �??Advances in silicon-on-insulator optoelectronics,�?? IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998)
    [CrossRef]
  2. T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, �??Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,�?? Appl. Phys. Lett. 81, 1323-1325 (2002).
    [CrossRef]
  3. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, �??Observation of stimulated Raman amplification in silicon waveguides,�?? Opt. Express, 11, 1731-1739 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731</a>
    [CrossRef] [PubMed]
  4. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, �??Anti-Stokes Raman conversion in Silicon waveguides,�?? Opt. Express 11, 2862-2872 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862</a>
    [CrossRef] [PubMed]
  5. D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, �??Phase-matching and nonlinear optical process in silicon waveguides,�?? Opt. Express 12, 149-160 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149</a>
    [CrossRef] [PubMed]
  6. J.J. Wayne, �??Optical third-order mixing in GaAs, Ge, Si, and InAs,�?? Phys. Rev. 178, 1295-1303 (1969).
    [CrossRef]
  7. M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom waveguides,�?? Appl. Phys. Lett. 82, 2954-2956 (2003)
    [CrossRef]
  8. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002)
    [CrossRef]
  9. O. Boyraz, J. Kim, M. N. Islam, F. Coppinger, and B. Jalali, �??10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers,�?? J. Lightwave Technol. 18, 2167-2175 (2000)
    [CrossRef]
  10. US Patent No. 6108478, Harpin et al., Aug 22, 2002
  11. G. P. Agrawal, Nonlinear fiber optics, (Academic Press, 1995).

Appl. Phys. Lett. (3)

T.K. Liang, H.K. Tsang, I.E. Day, J. Drake, A.P. Knights, and M. Asghari, �??Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,�?? Appl. Phys. Lett. 81, 1323-1325 (2002).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, �??Third-order nonlinearities in silicon at telecom waveguides,�?? Appl. Phys. Lett. 82, 2954-2956 (2003)
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, �??Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mm wavelength,�?? Appl. Phys. Lett. 80, 416-418 (2002)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina and F. Coppinger, �??Advances in silicon-on-insulator optoelectronics,�?? IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998)
[CrossRef]

J. Lightwave Technol. (1)

O. Boyraz, J. Kim, M. N. Islam, F. Coppinger, and B. Jalali, �??10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers,�?? J. Lightwave Technol. 18, 2167-2175 (2000)
[CrossRef]

Opt. Express (3)

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, �??Observation of stimulated Raman amplification in silicon waveguides,�?? Opt. Express, 11, 1731-1739 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731</a>
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, �??Anti-Stokes Raman conversion in Silicon waveguides,�?? Opt. Express 11, 2862-2872 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862</a>
[CrossRef] [PubMed]

D. Dimitropoulos, V. Raghunathan, R. Claps, B. Jalali, �??Phase-matching and nonlinear optical process in silicon waveguides,�?? Opt. Express 12, 149-160 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-149</a>
[CrossRef] [PubMed]

Phys. Rev. (1)

J.J. Wayne, �??Optical third-order mixing in GaAs, Ge, Si, and InAs,�?? Phys. Rev. 178, 1295-1303 (1969).
[CrossRef]

Other (2)

US Patent No. 6108478, Harpin et al., Aug 22, 2002

G. P. Agrawal, Nonlinear fiber optics, (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup used for measuring SPM in 2cm long silicon waveguides. 4ps short pulses with 2.2GW/cm2 peak power level propagated through silicon waveguides and spectral broadening is measured at the output.

Fig. 2.
Fig. 2.

SEM picture and schematic drawing of the tapered silicon waveguide.

Fig. 3.
Fig. 3.

Measured spectrum at the filter output, at the waveguide input and broadened spectrum at the waveguide output.

Fig. 4.
Fig. 4.

Effective loss profile inside the waveguide. Due to two photon absorption light is attenuated rapidly in the front end of the waveguide.

Fig. 5.
Fig. 5.

Simulated spectrum broadening versus power density, for a chirped Gaussian input pulse. Results show a 5 times broadening for 20 GW/cm2 peak intensity values. A 10× broadening can be achieved with a transform-limited input pulse. The maximum spectrum broadening is limited by two photon absorption.

Metrics