Abstract

We demonstrate the tapering of a photonic crystal fiber to achieve a microstructure pitch of less than 300 nm. We probe the tapered fiber in the transverse geometry to demonstrate the scaling of the photonic bandgaps associated with the microstructure. We show that the fundamental gap can be shifted down to the communications wavelengths, or even further to the visible spectrum. Our optical measurements are correlated with band structure calculations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  2. P. S. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003)
    [CrossRef] [PubMed]
  3. T. A Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fiber,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25- 27 (2000).
    [CrossRef]
  6. H. C. Nguyen, P. Domachuk, M. Sumetsky, M. J. Steel, M. Straub, M. Gu, and B. J. Eggleton �??Lateral thinking with photonic crystal fibers,�?? presented postdeadline at 16th Annual Meeting of IEEE Lasers and Electro-Optics Society, Tucson, AZ, USA, 26-30 Oct. 2003
  7. BandSOLVE�?� 1.3 (RSoft Design Group, Inc., Ossining, NY) 2003
  8. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu and C. Xu, �??Adiabatic coupling in tapered air-silica microstructured optical fiber,�?? IEEE Photonic Technol. Lett. 13, 52-54 (2001)
    [CrossRef]
  9. S.T. Huntington, J. Katsifolis, B.C. Gibson, J. Canning, K. Lyytikainen, J. Zagari, L.W. Cahill and J.D. Love, �??Retaining and characterizing nano-structure within tapered air-silica structured optical fibers,�?? Opt. Express 11, 98-104 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-98">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-98</a>
    [CrossRef] [PubMed]
  10. R. P. Kenny, T. A. Birks, and K. P. Oakley, �??Control of optical fiber taper shape,�?? Electron. Lett. 27, 1654-1656 (1991)
    [CrossRef]
  11. T. A. Birks, and Y. W. Li, �??The shape of fiber tapers,�?? J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  12. FullWAVE�?� 3.0.4 (RSoft Design Group, Inc., Ossining, NY) 2003

Electron. Lett. (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, �??Control of optical fiber taper shape,�?? Electron. Lett. 27, 1654-1656 (1991)
[CrossRef]

IEEE Photonic Technol. Lett. (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu and C. Xu, �??Adiabatic coupling in tapered air-silica microstructured optical fiber,�?? IEEE Photonic Technol. Lett. 13, 52-54 (2001)
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks, and Y. W. Li, �??The shape of fiber tapers,�?? J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Muller, J. A. West, N. F. Borelli, D. C. Allan, and K. W. Koch, �??Low-loss hollow-core silica/air photonic bandgap fiber,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

S.T. Huntington, J. Katsifolis, B.C. Gibson, J. Canning, K. Lyytikainen, J. Zagari, L.W. Cahill and J.D. Love, �??Retaining and characterizing nano-structure within tapered air-silica structured optical fibers,�?? Opt. Express 11, 98-104 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-98">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-2-98</a>
[CrossRef] [PubMed]

Opt. Lett. (2)

J. K. Ranka, R. S. Windeler and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25- 27 (2000).
[CrossRef]

T. A Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Science (1)

P. S. J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003)
[CrossRef] [PubMed]

Other (4)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

H. C. Nguyen, P. Domachuk, M. Sumetsky, M. J. Steel, M. Straub, M. Gu, and B. J. Eggleton �??Lateral thinking with photonic crystal fibers,�?? presented postdeadline at 16th Annual Meeting of IEEE Lasers and Electro-Optics Society, Tucson, AZ, USA, 26-30 Oct. 2003

BandSOLVE�?� 1.3 (RSoft Design Group, Inc., Ossining, NY) 2003

FullWAVE�?� 3.0.4 (RSoft Design Group, Inc., Ossining, NY) 2003

Supplementary Material (2)

» Media 1: MPEG (558 KB)     
» Media 2: MPEG (559 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a tapered PCF probed in a transverse direction to the axis of the taper. Inset shows SEM image of cleaved tapered PCF, with local outer diameter of 37.5µm and pitch <0.5 µm

Fig. 2.
Fig. 2.

Band diagram for triagonal lattice of air holes in silica with Λ=1.28 µm and hole diameter=0. 9 mm. Crosshatched regions indicate partial bandgaps along symmetry axes.

Fig. 3.
Fig. 3.

(a) SEM micrograph of untapered fiber (OD=108 µm, Λ=1.28 µm) and (b) tapered fiber: OD=47.1±0.6 µm, Λ ~0.56 µm

Fig. 4.
Fig. 4.

SEM micrographs of cleaved tapered fiber ends (a) OD=26.4±0.6µm, Λ~290 nm, (b) 21.3±0.3µm, Λ~217nm, and (c) OD=17.3±0.3µm, Λ~170nm

Fig. 5.
Fig. 5.

Optical microscope image of tapered PCF illuminated by white light from the front; taper OD at the center is ~24 µm. The color of the first order Bragg reflected light varies monotonically to shorter wavelengths as the taper dimensions are reduced.

Fig. 6.
Fig. 6.

Schematic diagram of transverse probing experiment

Fig. 7.
Fig. 7.

(a) Image of tapered fiber in experimental setup with PC microstructure oriented along Γ-M axis relative to optical axis. (b) Representative measured transmission spectrum for local taper OD=46.7±0.5 µm, with predicted TE and TM gaps superimposed.

Fig. 8.
Fig. 8.

Measured transmission spectra in tapered PCF transverse probing experiment.

Fig. 9.
Fig. 9.

(572 KB each) 2-D FDTD simulations corresponding to experiment with OD=43.2 µm and CW excitation for (a) 1100 nm (inside stop band) and (b) 1300 nm (outside stop band). [Media 1] [Media 2]

Fig. 10.
Fig. 10.

Fundamental partial gap along the Γ-M axis plotted as a function of local taper OD. Square points indicate experimentally measured wavelength at the minimum of the transmission notch and bars indicate FWHM of the notch.

Metrics