Abstract

In this study, a hollow optical waveguide with omni-directional reflectors in silicon-based materials was design, fabricated and characterized. By using dry etching technique, plasma-enhanced chemical vapor deposition for Si/SiO2 thin films and covering another wafer with omni-directional reflector together, the waveguides can be formed with an air core of 1.2mm×1.3mm. A uniform propagation loss of the waveguide to be around 1.7dB/cm for C+L band was found for the TE and TM modes. Polarization-independent hollow optical waveguides were obtained with the hollow waveguide structure.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987)
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  3. Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
    [CrossRef] [PubMed]
  4. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
    [CrossRef]
  5. Y. Matsuura and J.A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255–1259 (1997).
    [CrossRef]
  6. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based based on integrated optical hollow waveguide,” Opt. Lett. 29, 1894–1896 (2004).
    [CrossRef] [PubMed]
  7. T. Miura and F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” J. Jap. Appl. Phys. 43, L21–L23 (2004).
    [CrossRef]
  8. A. B. Fedotov, A. N. Naumov, D. A. Sidorov-Biryukov, N. V. Chigarev, A. M. Zheltikov, J. W. Haus, and R. B. Miles, “Photonic-bandgap planar hollow waveguide,” J. Opt. Soc. Am. B,  19, 1162–1168 (2002).
    [CrossRef]
  9. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
    [CrossRef]
  10. Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
    [CrossRef]
  11. H. Y. Lee, H. Makino, and T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett. 81, 4502–4504 (2002).
    [CrossRef]
  12. C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
    [CrossRef]

2004 (2)

T. Miura and F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” J. Jap. Appl. Phys. 43, L21–L23 (2004).
[CrossRef]

S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based based on integrated optical hollow waveguide,” Opt. Lett. 29, 1894–1896 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
[CrossRef]

2002 (2)

H. Y. Lee, H. Makino, and T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett. 81, 4502–4504 (2002).
[CrossRef]

A. B. Fedotov, A. N. Naumov, D. A. Sidorov-Biryukov, N. V. Chigarev, A. M. Zheltikov, J. W. Haus, and R. B. Miles, “Photonic-bandgap planar hollow waveguide,” J. Opt. Soc. Am. B,  19, 1162–1168 (2002).
[CrossRef]

1999 (1)

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

1998 (1)

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

1997 (3)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Y. Matsuura and J.A. Harrington, “Hollow glass waveguides with three-layer dielectric coating fabricated by chemical vapor deposition,” J. Opt. Soc. Am. A 14, 1255–1259 (1997).
[CrossRef]

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987)
[CrossRef] [PubMed]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

Bernini, R.

Campopiano, S.

Chang, J. Y.

C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
[CrossRef]

Chen, C. C.

C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
[CrossRef]

Chigarev, N. V.

Chigrin, D. N.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Chiping, C.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Cho, C. O

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Fedotov, A. B.

Fink, Y.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

Gaponenko, S. V.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Harrington, J.A.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

Haus, J. W.

Jeon, H.

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Joanopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

Koyama, F.

T. Miura and F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” J. Jap. Appl. Phys. 43, L21–L23 (2004).
[CrossRef]

Lavrinenko, A. V.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Lee, H, W.

C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
[CrossRef]

Lee, H. Y.

H. Y. Lee, H. Makino, and T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett. 81, 4502–4504 (2002).
[CrossRef]

Luan, P. G.

C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
[CrossRef]

Makino, H.

H. Y. Lee, H. Makino, and T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett. 81, 4502–4504 (2002).
[CrossRef]

Matsuura, Y.

Michel, J.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Miles, R. B.

Miura, T.

T. Miura and F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” J. Jap. Appl. Phys. 43, L21–L23 (2004).
[CrossRef]

Naumov, A. N.

Park, Y.

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Roh, Y. G.

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Sarro, P. M.

Shanhui, F.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Sidorov-Biryukov, D. A.

Sung, M. G.

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

Thomas, E. L.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

Woo, J. C.

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987)
[CrossRef] [PubMed]

Yao, T.

H. Y. Lee, H. Makino, and T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett. 81, 4502–4504 (2002).
[CrossRef]

Yarotsky, D. A.

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Zeni, L.

Zheltikov, A. M.

Appl. Phys. A (1)

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Park, Y. Park, Y. G. Roh, C. O Cho, H. Jeon, M. G. Sung, and J. C. Woo, “GaAs-based near-infrared omnidirectional reflector,” Appl. Phys. Lett. 82, 2770–2772 (2003).
[CrossRef]

H. Y. Lee, H. Makino, and T. Yao, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55um,” Appl. Phys. Lett. 81, 4502–4504 (2002).
[CrossRef]

J. Jap. Appl. Phys. (1)

T. Miura and F. Koyama, “Low-loss and polarization-Insensitive Semicondductor Hollow Waveguide with GaAs/AlAs Multi-Layer Mirrors,” J. Jap. Appl. Phys. 43, L21–L23 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (2)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joanopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987)
[CrossRef] [PubMed]

Science (1)

Y. Fink, J. N. Winn, F. Shanhui, C. Chiping, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998).
[CrossRef] [PubMed]

The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003 (1)

C. C. Chen, P. G. Luan, J. Y. Chang, and H, W. Lee, “Design of omnidirectional reflector air-waveguide,” The 5th Pacific Rim Conference on CLEO/Pacific Rim 2003,  2, 610–615 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of hollow waveguide with ODR

Fig. 2.
Fig. 2.

Mode pattern of SHOW-ODR as (a) with well-bonded the ODRs and (b) with a 1µm gap between the ODRs.

Fig. 3.
Fig. 3.

SEM micrograph of cross-section of SHOW-ODR.

Fig. 4.
Fig. 4.

(a) Mode pattern of a conventional single mode fiber with a core diameter of 9µm.(b) Mode pattern of SHOW -ODR. The horizontal and vertical mode size is around 1.3µm and 1.4µm, respectively.

Fig. 5.
Fig. 5.

Propagation loss of SHOW-ODR for the TE and TM modes

Metrics