Abstract

Optical anisotropy plays a fundamental role on light propagation in nematic liquid crystals. With specific reference to nematicons, we investigate the transverse dynamics due to the interplay of nonlinear self-confinement, birefringent walk-off and a bias-dependent transverse index profile.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. V. Tabiryan, A.V. Sukhov and B. Ya. Zel'dovich, �??Orientational Optical Nonlinearity of Liquid Crystals,�?? Mol. Cryst. Liq. Cryst. 136, 1-131 (1986)
    [CrossRef]
  2. I. C. Khoo, Liquid Crystals: Physical Properties and Optical Phenomena (Wiley & Sons, New York, 1995)
  3. F. Simoni, Nonlinear Optical Properties of Liquid Crystals, (World Scientific, London, 1997)
    [CrossRef]
  4. R. Asquini and A. d�??Alessandro, "BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55mm," Mol. Cryst. Liq. Cryst. 375, 243-247 (2002)
    [CrossRef]
  5. G. Assanto and M. Peccianti, �?? Spatial solitons in nematic liquid crystals,�?? IEEE J. Quantum Electron. 39, 13-21 (2003)
    [CrossRef]
  6. G. Assanto, M. Peccianti and C. Conti, �?? Nematicons: Optical Spatial Solitons in Nematic Liquid Crystals,�?? Opt. Photon. News 14, 44-48 (2003)
    [CrossRef]
  7. X. Hutsebaut , C. Cambournac, M. Haelterman , A. Adamski and K. Neyts, �??Single-component higher-order mode solitons in liquid crystals,�?? Opt. Commun. 233, 211-217 (2004)
    [CrossRef]
  8. C. Conti, M. Peccianti and G. Assanto, �?? Route to nonlocality and observation of accessible solitons,�?? Phys. Rev. Lett. 91, 73901 (2003)
    [CrossRef]
  9. C. Conti, M. Peccianti and G. Assanto, �??Observation of optical spatial solitons in a highly nonlocal Medium,�?? Phys. Rev. Lett. 92, 113902 (2004)
    [CrossRef] [PubMed]
  10. M. Peccianti, C. Conti and G. Assanto, �??Optical modulational instability in a nonlocal medium,�?? Phys. Rev. E 68, 025602 (2003)
    [CrossRef]
  11. G. I. Stegeman and M. Segev, �??Optical spatial solitons and their interactions: universality and diversity,�?? Science 286, 1518 (1999)
    [CrossRef] [PubMed]
  12. S. Trillo and W. E Torruellas, Spatial Solitons (Springer, Berlin, 2001)
  13. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic Press, London, 2003)
  14. E. Braun, L. P. Faucheux, and A. Libchaber, �??Strong self-focusing in nematic liquid crystals,�?? Phys. Rev. A 48, 611-622 (1993)
    [CrossRef] [PubMed]
  15. J. F. Henninot, M. Debailleul, F. Derrien, G. Abbate and M. Warenghem, "(2D+1) Spatial optical solitons in dye doped liquid crystals," Synth. Met. 8915, 1-5 (2001)
  16. J. F. Henninot, M. Debailleul and M. Warenghem, �??Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystal,�?? Mol. Cryst. Liq. Cryst. 375, 1538-1547 (2002)
    [CrossRef]
  17. M. Peccianti, G. Assanto, A. De Luca, C. Umeton and I. C. Khoo, �??Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,�?? Appl. Phys. Lett. 77, 7-9 (2000)
    [CrossRef]
  18. CRC Handbook of Laser Science and Technology: Optical Materials, Suppl. 2, (ed. Weber, M. J., CRC Press, New York, 1995).
  19. M. Peccianti, G. Assanto, �??Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,�?? Opt. Lett. 26, 1690-1692 (2001)
    [CrossRef]
  20. M. Peccianti, K. A. Brzadkiewicz, G. Assanto, �??Nonlocal spatial soliton interactions in nematic liquid crystals,�?? Opt. Lett. 27, 1460-1462 (2002)
    [CrossRef]

Appl. Phys. Lett. (1)

M. Peccianti, G. Assanto, A. De Luca, C. Umeton and I. C. Khoo, �??Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,�?? Appl. Phys. Lett. 77, 7-9 (2000)
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Assanto and M. Peccianti, �?? Spatial solitons in nematic liquid crystals,�?? IEEE J. Quantum Electron. 39, 13-21 (2003)
[CrossRef]

Mol. Cryst. Liq. Cryst. (3)

N. V. Tabiryan, A.V. Sukhov and B. Ya. Zel'dovich, �??Orientational Optical Nonlinearity of Liquid Crystals,�?? Mol. Cryst. Liq. Cryst. 136, 1-131 (1986)
[CrossRef]

R. Asquini and A. d�??Alessandro, "BPM Analysis of an integrated optical switch using polymeric optical waveguides and SSFLC at 1.55mm," Mol. Cryst. Liq. Cryst. 375, 243-247 (2002)
[CrossRef]

J. F. Henninot, M. Debailleul and M. Warenghem, �??Tunable non-locality of thermal non-linearity in dye doped nematic liquid crystal,�?? Mol. Cryst. Liq. Cryst. 375, 1538-1547 (2002)
[CrossRef]

Opt. Commun. (1)

X. Hutsebaut , C. Cambournac, M. Haelterman , A. Adamski and K. Neyts, �??Single-component higher-order mode solitons in liquid crystals,�?? Opt. Commun. 233, 211-217 (2004)
[CrossRef]

Opt. Lett. (2)

Opt. Photon. News (1)

G. Assanto, M. Peccianti and C. Conti, �?? Nematicons: Optical Spatial Solitons in Nematic Liquid Crystals,�?? Opt. Photon. News 14, 44-48 (2003)
[CrossRef]

Phys. Rev. A (1)

E. Braun, L. P. Faucheux, and A. Libchaber, �??Strong self-focusing in nematic liquid crystals,�?? Phys. Rev. A 48, 611-622 (1993)
[CrossRef] [PubMed]

Phys. Rev. E (1)

M. Peccianti, C. Conti and G. Assanto, �??Optical modulational instability in a nonlocal medium,�?? Phys. Rev. E 68, 025602 (2003)
[CrossRef]

Phys. Rev. Lett. (2)

C. Conti, M. Peccianti and G. Assanto, �?? Route to nonlocality and observation of accessible solitons,�?? Phys. Rev. Lett. 91, 73901 (2003)
[CrossRef]

C. Conti, M. Peccianti and G. Assanto, �??Observation of optical spatial solitons in a highly nonlocal Medium,�?? Phys. Rev. Lett. 92, 113902 (2004)
[CrossRef] [PubMed]

Science (1)

G. I. Stegeman and M. Segev, �??Optical spatial solitons and their interactions: universality and diversity,�?? Science 286, 1518 (1999)
[CrossRef] [PubMed]

Synth. Met. (1)

J. F. Henninot, M. Debailleul, F. Derrien, G. Abbate and M. Warenghem, "(2D+1) Spatial optical solitons in dye doped liquid crystals," Synth. Met. 8915, 1-5 (2001)

Other (5)

CRC Handbook of Laser Science and Technology: Optical Materials, Suppl. 2, (ed. Weber, M. J., CRC Press, New York, 1995).

S. Trillo and W. E Torruellas, Spatial Solitons (Springer, Berlin, 2001)

Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic Press, London, 2003)

I. C. Khoo, Liquid Crystals: Physical Properties and Optical Phenomena (Wiley & Sons, New York, 1995)

F. Simoni, Nonlinear Optical Properties of Liquid Crystals, (World Scientific, London, 1997)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the NLC cell and experimental geometry.

Fig. 2.
Fig. 2.

Calculated maximum (on-axis) walk-off versus cell bias

Fig. 3.
Fig. 3.

Bias induced index profile in a cell filled with E7 and an applied voltage V=1.48V, providing maximum walk-off.

Fig. 4.
Fig. 4.

Simulated propagation of a 3mW X-polarized gaussian beam launched in a biased cell (as in Fig. 3) with k-vector parallel to Z and a) no phase front tilt ; b) a 7° tilt in order to compensate walk-off on axis.

Fig. 5.
Fig. 5.

Nematicon transverse profile in the observation plane at ϕ=45° with respect to X. a) For V 0=1.0V the small walk-off (about 2°) mediates an oscillation of modest amplitude; b) at V 0=1.6V a larger walk-off (about 7°) corresponds to a shorter period with larger elongation across X. c) By launching the input beam with a phase front tilt in order to compensate the walk-off, the nematicon at V 0=1.6V can be generated with no motion across X

Fig. 6.
Fig. 6.

Soliton trajectories for P=3.2mW versus bias V 0. The scale Δx quantifies the deviation from input position X=0.

Fig. 7.
Fig. 7.

Calculated (solid line) and measured (dashed line with dots) periodicity Λ of the nematicon transverse oscillation versus applied bias V0.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( K 1 cos 2 Θ + K 3 sin 2 Θ ) d 2 Θ d X 2 + K 3 K 1 2 sin 2 ξ ( d Θ d X ) 2 + 1 2 ε a ( d V d X ) 2 sin 2 Θ = 0
( ε sin 2 Θ + ε cos 2 Θ ) d 2 V d X 2 + ε a sin 2 Θ d Θ d X d V d X = 0
δ ( Θ ) = arctan ( Δ n 2 sin ( 2 Θ ) Δ n 2 + 2 n 2 + Δ n 2 cos ( 2 Θ ) )
j 2 k 0 n ( Θ ) E Z = 2 E + k 0 2 ( n 2 ( θ ) n 2 ( Θ ) ) E + j 2 k 0 n ( Θ ) tan δ ( θ ) E X
K θ + ε 0 ( 1 2 Δ ε a d V d X 2 + 1 4 Δ n 2 E 2 ) sin 2 θ = 0

Metrics