Abstract

The self-mixing interference in birefringent dual frequency laser is systematically studied for the first time. The output intensities of two orthogonal modes are both modulated by external cavity length, and their phase relationship is experimentally and theoretically demonstrated. When frequency difference is greater than line width of homogeneous broadening gain curve, the phase relationship is determined by phase difference of two modes. If the frequency difference is smaller than the line width, modes competion will play an important role. Our results can advance the research of self-mixing interferometer of orthogonally polarized dual frequency laser.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Mukai, and K. Otsuka, ???New route to optical chaos: Successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,??? Phys. Rev. Lett. 55, 1711-1714 (1985).
    [CrossRef] [PubMed]
  2. M.Sciamanna, K.Panajotov, H.Thienpont, I.Veretennicoff, P.Megret and M.Blondel, ???Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,??? Opt. Lett. 28, 1543-1545 (2003).
    [CrossRef] [PubMed]
  3. H. Osmundsen and N. Gade, ???Influence of optical feedback on laser frequency spectrum and threshold conditions,??? IEEE J. QE. 19, 465-469 (1983).
    [CrossRef]
  4. N. Servagent, T. Bosch and M. Lescure, ???A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,??? IEEE Trans. Intrum. Meas. 46, 847-850 (1997).
    [CrossRef]
  5. P. A. Roos, M. Stephens and C. Wiemen, ???Laser Vibrometer based on optical feedback induced frequency modulation of a single mode laser diode,??? Appl. Opt. 35, 6754-6761 (1996).
    [CrossRef] [PubMed]
  6. S. S. Hara, A. Yoshida and M. Sumi, ???Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,??? Appl. Opt. 25, 1471-179 (1986).
  7. W. M. Wang, K. T. V. Grattan and A. W. Palmer, ???Self-mixing interference inside a single mode diode laser for optical sensing applications,??? IEEE J. Lightwave Tech. 12, 1577-1587 (1994).
    [CrossRef]
  8. W. M. Wang, W. J. O. Boyle and K. T. V. Grattan, ???Self-mixing interference in a diode laser: Experimental observations and Theoretical Analysis,??? Appl. Opt. 32, 1551-1558 (1993).
    [CrossRef] [PubMed]
  9. P. J. D. Groot, G. M. Gallatin and S. H. Macomber, ???Ranging and velocimetry signal generation in a backscatter-modulated laser diode,??? Appl. Opt. 27, 4475-4479 (1988).
    [CrossRef] [PubMed]
  10. S. Gao, D. Lin, C. Yin and J. Guo, ???A 5MHz beat frequency He???Ne laser equipped with bireflectance cavity mirror,??? Opt. Laser Tech. 33, 335-339 (2001).
    [CrossRef]
  11. S. Yang and S. Zhang, ???The frequency split phenomenon in a HeNe laser with a rotation quartz crystal plate in its cavity,??? Opt. Commun. 68, 55-57 (1988).
    [CrossRef]
  12. S. Zhang, K. Li and G. Jin, ???Birefringent tuning double frequency He-Ne laser,??? Appl. Opt. 29, 1265-1267 (1990).
    [CrossRef] [PubMed]
  13. S. Zhang, K. Li, M. Wu and G. Jin, ???The pattern of mode competion between two frequencies produced by mode split technology with tuning of the cavity length,??? Opt. Commun. 90, 279-282 (1992).
    [CrossRef]
  14. Y. Xiao, S. Zhang and Y. Li, ???Tuning characteristics of frequency difference tuning of Zeemanbirefringence He-Ne dual frequency laser,??? Chin. Phys. Lett. 20, 230-233 (2003).
    [CrossRef]
  15. G. A. Acket, D. Lenstra, A. D. Boef and B. H. Verbeek, ???The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,??? IEEE J. QE. 20, 1163-1169 (1984).
    [CrossRef]
  16. R.W. Tkach and A.R. Chraplyvy, ???Regimes of feedback effects in 1.5-µm distributed feedback lasers,??? J. Lightwave Technol. 4, 1655-1661 (1986).
    [CrossRef]
  17. A.Olsson and C.L.Tang, ???Coherent optical interference effects in external-cavity semiconductor lasers,??? IEEE J. QE. 17, 1320-1323 (1981).
    [CrossRef]
  18. P.J.Brannon, ???Laser feedback: its effect on laser frequency,??? Appl. Opt. 15, 1119-1120 (1976).
    [CrossRef] [PubMed]

Appl. Opt. (6)

Chin. Phys. Lett. (1)

Y. Xiao, S. Zhang and Y. Li, ???Tuning characteristics of frequency difference tuning of Zeemanbirefringence He-Ne dual frequency laser,??? Chin. Phys. Lett. 20, 230-233 (2003).
[CrossRef]

IEEE J. Lightwave Tech. (1)

W. M. Wang, K. T. V. Grattan and A. W. Palmer, ???Self-mixing interference inside a single mode diode laser for optical sensing applications,??? IEEE J. Lightwave Tech. 12, 1577-1587 (1994).
[CrossRef]

IEEE J. QE. (3)

H. Osmundsen and N. Gade, ???Influence of optical feedback on laser frequency spectrum and threshold conditions,??? IEEE J. QE. 19, 465-469 (1983).
[CrossRef]

G. A. Acket, D. Lenstra, A. D. Boef and B. H. Verbeek, ???The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,??? IEEE J. QE. 20, 1163-1169 (1984).
[CrossRef]

A.Olsson and C.L.Tang, ???Coherent optical interference effects in external-cavity semiconductor lasers,??? IEEE J. QE. 17, 1320-1323 (1981).
[CrossRef]

IEEE Trans. Intrum. Meas. (1)

N. Servagent, T. Bosch and M. Lescure, ???A laser displacement sensor using the self-mixing effect for modal analysis and defect detection,??? IEEE Trans. Intrum. Meas. 46, 847-850 (1997).
[CrossRef]

Lightwave Technol. (1)

R.W. Tkach and A.R. Chraplyvy, ???Regimes of feedback effects in 1.5-µm distributed feedback lasers,??? J. Lightwave Technol. 4, 1655-1661 (1986).
[CrossRef]

Opt. Commun. (2)

S. Zhang, K. Li, M. Wu and G. Jin, ???The pattern of mode competion between two frequencies produced by mode split technology with tuning of the cavity length,??? Opt. Commun. 90, 279-282 (1992).
[CrossRef]

S. Yang and S. Zhang, ???The frequency split phenomenon in a HeNe laser with a rotation quartz crystal plate in its cavity,??? Opt. Commun. 68, 55-57 (1988).
[CrossRef]

Opt. Laser Tech. 33 (1)

S. Gao, D. Lin, C. Yin and J. Guo, ???A 5MHz beat frequency He???Ne laser equipped with bireflectance cavity mirror,??? Opt. Laser Tech. 33, 335-339 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Mukai, and K. Otsuka, ???New route to optical chaos: Successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity,??? Phys. Rev. Lett. 55, 1711-1714 (1985).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. M1, M2, ME: mirrors; QC: uniaxial quartz crystal; W: glass window anti-reflective coated; PZT: piezoelectric transducer; PBS: Wollaston prism; D1, D2: photodetectors; OS: oscilloscope; SP: spectrometer; AD: avalanche photodiode; P: polarizer; BS: beam splitter; SI: scanning interferometer.

Fig. 2.
Fig. 2.

Oscilloscope waveforms of the intensity modulation curves of two orthogonally polarized lights with different frequency differences: (a)Δν=70MHz, (b)Δν=150MHz, (c) Δν=275MHz, (d)Δν=550MHz, (e)Δν=730MHz, (f)Δν=1100MHz. l=67.5mm

Fig. 3.
Fig. 3.

Oscilloscope waveforms of the intensity modulation curves of two orthogonal polarized lights with different frequency differences: (a) Δν=70MHz, (b) Δν=150MHz, (c) Δν=275MHz, (d)Δν=550MHz, (e)Δν=730MHz, (f)Δν=1100MHz. l=135mm

Fig. 4.
Fig. 4.

Oscilloscope waveforms of the intensity modulation curves of two orthogonal polarized lights with different frequency differences: (a) Δν=70MHz, (b) Δν=150MHz, (c) Δν=275MHz, (d)Δν=550MHz, (e)Δν=730MHz, (f)Δν=1100MHz. l=270mm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r 1 r eff o exp [ ( g o α o ) L ] exp ( i ω o τ c ) = 1 ,
r 1 r eff e exp [ ( g e α e ) L ] exp ( i ω e τ c ) = 1
I o = I o 0 + ε o η o cos ( ω o τ )
I e = I e 0 + ε e η e cos ( ω e τ ) ,
I o = I o 0 + ε o η o cos ( 4 π c ν o l ) ,
I e = I e 0 + ε e η e cos ( 4 π c ν e l )
δ = 4 π Δ ν l c = 2 π l L Δ ν Λ ,

Metrics