Abstract

We present a highly versatile approach to the application of femtosecond Er:fiber lasers in optical frequency metrology. Our concept relies on the implementation of two parallel amplifiers, seeded by a single master oscillator. With the comb spacing locked to a frequency of 100 MHz, we apply the output from the first amplifier to generate a feedback signal to achieve a simultaneous phase-lock for the comb offset frequency. The output of the independently configurable second amplifier enables precision frequency measurements in the visible and near-infrared. As a first application, we continuously measure the absolute frequency of a resonator-stabilized diode laser over a period of 88 hours.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stetz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,�?? Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  2. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, �??Absolute Optical Frequency Measurement of the Caesium D1 Line with a Mode-Locked Laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999).
    [CrossRef]
  3. S. T. Cundiff, J. Ye, and J. L. Hall, �??Optical frequency synthesis based on mode-locked lasers,�?? Rev. Sci. Instr. 72, 3749-3771 (2001).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stetz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  5. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, �??An Optical Clock Based on a Single Trapped 199Hg+ Ion,�?? Science 293, 825-828 (2001).
    [CrossRef] [PubMed]
  6. F. Tauser, A. Leitenstorfer, and W. Zinth, �??Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope-phase evolution,�?? Opt. Express 11, 594-600 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-6-594</a>
    [CrossRef] [PubMed]
  7. J.Rauschenberger, T. M. Fortier, D.J. Jones, J. Ye,and S. T. Cundiff, �??Control of the frequency comb from a mode-locked Erbium-doped fiber laser,�?? Opt. Express 10, 1404-1410 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1404</a>
    [CrossRef] [PubMed]
  8. N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, �??Frequency stabilization of mode-lockedErbium fiber lasers using pump power control,�?? Appl. Phys. B 78, 321-324 (2004).
    [CrossRef]
  9. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, �??Phase-locked carrier-envelope-offset frequency at 1560 nm," Opt. Express 12, 770-775 (2004), <a href="http://www.opticsexpress.org/anstract.cfm?URI=OPEX-12-5-770."> www.opticsexpress.org/anstract.cfm?URI=OPEX-12-5-770</a>
    [CrossRef] [PubMed]
  10. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, �??Phase-locked,erbium-fiber-laser-based frequency comb in the near infrared,�?? Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  11. I. Hartl, G. Imeshev, G. C. Cho, M. E. Fermann, T. R. Schibli, K. Minoshima, A. Onae, F.-L. Hong, H.Matsumoto, J. W. Nicholson, and M. F. Yan, �??Carrier envelope phase locking of an in-line, low-noise Er fiber system,�?? presented at the 23rd Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA, 16-21 May 2004.
  12. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, �??Unidirectional ring resonator for self-starting passively mode-locked lasers,�?? Opt. Lett. 18, 220-222 (1993).
    [CrossRef] [PubMed]
  13. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, �??Frequency-resolved optical gating with the use of second-harmonic generation,�?? J. Opt. Soc. Am. B 11, 2206-2215 (1994).
    [CrossRef]
  14. F. Tauser, F. Adler, and A. Leitenstorfer, �??Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,�?? Opt. Lett. 29, 516-518 (2004).
    [CrossRef] [PubMed]
  15. H. R. Telle, B. Lipphardt, and J. Stenger, �??Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,�?? Appl. Phys. B 74, 1-6 (2002).
    [CrossRef]
  16. C. Degenhardt, T. Nazarova, Chr. Lisdat, H. Stoehr, U. Sterr, and F. Riehle, �??Influence of chirped excitation pulses in an optical clock with ultracold atoms,�?? IEEE Trans. Instrum. Meas. (to be published).
  17. L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, �??A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,�?? IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
    [CrossRef]
  18. J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H. R. Telle, J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser,�?? Phys. Rev. A 63, 021802(R) (2001).
    [CrossRef]
  19. K. L. Corwin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, L. Hollberg, N. R. Newbury, and S. A. Diddams, �??Absolute-frequency measurement with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser,�?? Opt. Lett. 29, 397-399 (2004).
    [CrossRef] [PubMed]
  20. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, �??First Phase-Coherent Frequency Measurement of Visible Radiation,�?? Phys. Rev. Lett. 76, 18-21 (1996).
    [CrossRef] [PubMed]
  21. Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, �??Absolute Frequency Measurement of the Hg+and Ca Optical Clock Transitions with a Femtosecond Laser,�?? Phys. Rev. Lett. 86, 4996-4999 (2001).
    [CrossRef] [PubMed]

Appl. Phys. B

N. Haverkamp, H. Hundertmark, C. Fallnich, and H. R. Telle, �??Frequency stabilization of mode-lockedErbium fiber lasers using pump power control,�?? Appl. Phys. B 78, 321-324 (2004).
[CrossRef]

H. R. Telle, B. Lipphardt, and J. Stenger, �??Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements,�?? Appl. Phys. B 74, 1-6 (2002).
[CrossRef]

CLEO

I. Hartl, G. Imeshev, G. C. Cho, M. E. Fermann, T. R. Schibli, K. Minoshima, A. Onae, F.-L. Hong, H.Matsumoto, J. W. Nicholson, and M. F. Yan, �??Carrier envelope phase locking of an in-line, low-noise Er fiber system,�?? presented at the 23rd Conference on Lasers and Electro-Optics (CLEO), San Francisco, California, USA, 16-21 May 2004.

IEEE J. Sel. Top. Quantum Electron.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, �??A New Method to Determine the Absolute Mode Number of a Mode-Locked Femtosecond-Laser Comb Used for Absolute Optical Frequency Measurements,�?? IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas.

C. Degenhardt, T. Nazarova, Chr. Lisdat, H. Stoehr, U. Sterr, and F. Riehle, �??Influence of chirped excitation pulses in an optical clock with ultracold atoms,�?? IEEE Trans. Instrum. Meas. (to be published).

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Stenger, T. Binnewies, G. Wilpers, F. Riehle, H. R. Telle, J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser,�?? Phys. Rev. A 63, 021802(R) (2001).
[CrossRef]

Phys. Rev. Lett.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, �??First Phase-Coherent Frequency Measurement of Visible Radiation,�?? Phys. Rev. Lett. 76, 18-21 (1996).
[CrossRef] [PubMed]

Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, �??Absolute Frequency Measurement of the Hg+and Ca Optical Clock Transitions with a Femtosecond Laser,�?? Phys. Rev. Lett. 86, 4996-4999 (2001).
[CrossRef] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, �??Absolute Optical Frequency Measurement of the Caesium D1 Line with a Mode-Locked Laser,�?? Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

Rev. Sci. Instr.

S. T. Cundiff, J. Ye, and J. L. Hall, �??Optical frequency synthesis based on mode-locked lasers,�?? Rev. Sci. Instr. 72, 3749-3771 (2001).
[CrossRef]

Science

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, �??An Optical Clock Based on a Single Trapped 199Hg+ Ion,�?? Science 293, 825-828 (2001).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stetz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, �??Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,�?? Science 288, 635-639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic setup of the two-color Er:fiber laser system. Solid lines indicate propagation inside optical fiber, dashed lines stand for propagation in free space. CL, fiber-to-free-space coupling lenses; MTS, manual translation stage; PBS, polarizing beam splitter; λ/2 and λ/4, wave plates; LF, Lyot filter; FI, Faraday isolator; WDM, wavelength division multiplexer; HNF, highly nonlinear fiber; SHG, frequency doubling crystal; L, lenses; POL, polarizer; PD1, InGaAs photo diode; PD2, Si photo diode.

Fig. 2.
Fig. 2.

(a) Spectrum and (b) temporal pulse profile of the compressed pulses from the first amplifier branch (black lines). The corresponding phases are depicted in blue. The relatively flat spectral phase indicates an almost transform-limited pulse. These results were obtained using frequency-resolved optical gating.

Fig. 3.
Fig. 3.

Detected comb offset recorded with an rf spectrum analyzer with a resolution bandwidth of 100 kHz and a video bandwidth of 10 kHz (black). The 3-dB-bandwidth of the Lorentzian fit (red) amounts to 330 kHz.

Fig. 4.
Fig. 4.

Scheme of the electronics used for locking the repetition rate. PD1 is the photo diode detecting the repetition rate. LP, low-pass filter; PS, power splitter. An analogous stabilization scheme is also used for the CEO frequency.

Fig. 5.
Fig. 5.

(a) Recorded frequency of the phase-locked repetition rate at 100 003 087 Hz and (b) the simultaneously phase-locked carrier-envelope-offset beat at 30 000 000 Hz for a period of measurement of 10 000 seconds.

Fig. 6.
Fig. 6.

Experimental setup for measuring the frequency of a resonator-stabilized ECDL by employing the phase-locked comb from the second amplifier branch of the fiber laser. CL, out-coupling lens; DM, dichroic mirror; BC, beam combiner; LBO, lithium borate crystal; G, grating.

Fig. 7.
Fig. 7.

Measured difference of the ECDL frequency to an arbitrarily chosen offset frequency f offset over a period of 88 hours.

Fig. 8.
Fig. 8.

Allan standard deviation of the measured frequency f ECDL. The integration time is as high as 30 000 seconds. For long integration times the Allan deviation rises with τ +1, which is typical for a drifting laser cavity.

Tables (1)

Tables Icon

Table 1. Technical data of the extended cavity diode laser (ECDL)

Metrics