F. Du, Y.Q. Lu, and S.T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]
J. Li and S.T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[Crossref]
J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]
N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540
[Crossref]
[PubMed]
J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres awith high-index rods,” J. Opt. A: Pure and Appl. Opt. 6, 798–804 (2004).
[Crossref]
J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]
J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956
[Crossref]
[PubMed]
Y.-J. Wang and G. O. Carlisle“Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Materials Science: Materials in electronics 13, 173–178 (2002).
[Crossref]
A. K. Abeeluck, N.M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314
[Crossref]
[PubMed]
N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341
[Crossref]
[PubMed]
D. Armitage and S. M. Delwart, “Nonlinear optical effects in the nematic phase,” Mol. Cryst. Liq. Cryst. 122, 59–75 (1985).
[Crossref]
D. Armitage, “Thermal properties and heat flow in the laser addressed liquid-crystal display,” J. Appl. Phys. 52, 1294–1300 (1981).
[Crossref]
C. Hu and J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am 64, 1424–1432 (1974).
[Crossref]
D. Armitage and S. M. Delwart, “Nonlinear optical effects in the nematic phase,” Mol. Cryst. Liq. Cryst. 122, 59–75 (1985).
[Crossref]
D. Armitage, “Thermal properties and heat flow in the laser addressed liquid-crystal display,” J. Appl. Phys. 52, 1294–1300 (1981).
[Crossref]
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]
T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, “Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber,” ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]
T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
Y.-J. Wang and G. O. Carlisle“Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Materials Science: Materials in electronics 13, 173–178 (2002).
[Crossref]
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
D. Armitage and S. M. Delwart, “Nonlinear optical effects in the nematic phase,” Mol. Cryst. Liq. Cryst. 122, 59–75 (1985).
[Crossref]
F. Du, Y.Q. Lu, and S.T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]
N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540
[Crossref]
[PubMed]
A. K. Abeeluck, N.M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698
[Crossref]
[PubMed]
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, “Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber,” ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]
M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, “Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber,” ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
C. Hu and J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am 64, 1424–1432 (1974).
[Crossref]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698
[Crossref]
[PubMed]
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
I. C. Khoo, Liquid Crystals: Physical properties and nonlinear optical phenomena (Wiley Interscience, New York, 1995).
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]
J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres awith high-index rods,” J. Opt. A: Pure and Appl. Opt. 6, 798–804 (2004).
[Crossref]
T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, “Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber,” ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]
J. Li and S.T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[Crossref]
F. Du, Y.Q. Lu, and S.T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]
J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956
[Crossref]
[PubMed]
N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341
[Crossref]
[PubMed]
J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956
[Crossref]
[PubMed]
M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, “Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber,” ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
Y.-J. Wang and G. O. Carlisle“Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Materials Science: Materials in electronics 13, 173–178 (2002).
[Crossref]
C. Hu and J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am 64, 1424–1432 (1974).
[Crossref]
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]
J. Li and S.T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[Crossref]
F. Du, Y.Q. Lu, and S.T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]
F. Du, Y.Q. Lu, and S.T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[Crossref]
J. Li and S.T. Wu, “Extended Cauchy equations for the refractive indices of liquid crystals,” J. Appl. Phys. 95, 896–901 (2004).
[Crossref]
J. Li, S. Gauza, and S. T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[Crossref]
D. Armitage, “Thermal properties and heat flow in the laser addressed liquid-crystal display,” J. Appl. Phys. 52, 1294–1300 (1981).
[Crossref]
Y.-J. Wang and G. O. Carlisle“Optical properties of disperse-red-1-doped nematic liquid crystal,” J. Materials Science: Materials in electronics 13, 173–178 (2002).
[Crossref]
J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres awith high-index rods,” J. Opt. A: Pure and Appl. Opt. 6, 798–804 (2004).
[Crossref]
J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, “All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730nm,” J. Opt. A: Pure Appl. Opt. 6, 667–670 (2004).
[Crossref]
C. Hu and J. R. Whinnery, “Losses of a nematic liquid-crystal optical waveguide,” J. Opt. Soc. Am 64, 1424–1432 (1974).
[Crossref]
D. Armitage and S. M. Delwart, “Nonlinear optical effects in the nematic phase,” Mol. Cryst. Liq. Cryst. 122, 59–75 (1985).
[Crossref]
J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12, 956–960 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-5-956
[Crossref]
[PubMed]
D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314–1319 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314
[Crossref]
[PubMed]
N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341
[Crossref]
[PubMed]
A. K. Abeeluck, N.M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320–1333 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320
[Crossref]
[PubMed]
N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Application of an ARROW model for designing tunable photonic devices,” Opt. Express 12, 1540–1550 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1540
[Crossref]
[PubMed]
B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698
[Crossref]
[PubMed]
T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589
[Crossref]
[PubMed]
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd edition, (Clarendon Press, Oxford, 1993).
M. W. Haakestad, T. T. Larsen, M. D. Nielsen, H. E. Engan, and A. Bjarklev, “Electrically Tunable Fiber Device Based on a Nematic Liquid Crystal Filled Photonic Crystal Fiber,” ECOC 2004, postdeadline paper Th4.3.2, Stockholm, Sweden.
R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466–468.
I. C. Khoo, Liquid Crystals: Physical properties and nonlinear optical phenomena (Wiley Interscience, New York, 1995).