Abstract

A nonlinear optical, interferometric method for improving the resolution of a lithographic system by an arbitrarily large factor with high visibility is described. The technique is implemented experimentally for both two-fold and three-fold enhancement of the resolution with respect to the traditional Rayleigh limit. In these experiments, an N-photon-absorption recording medium is simulated by Nth harmonic generation followed by a CCD camera. This technique does not exploit quantum features of light; this fact suggests that the improved resolution achieved through use of “quantum lithography” results primarily from the nonlinear response of the recording medium and not from quantum features of the light field.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Lord Rayleigh, �??Investigations in optics with special reference to the spectroscope,�?? Phil. Mag. 8, 261-274 (1879)
    [CrossRef]
  2. S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, �??Interferometric lithography �??�?? from periodic arrays to arbitrary patterns,�?? Microelectron. Eng. 42, 145-148 (1998).
    [CrossRef]
  3. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, �??N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, �??Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit" Phys. Rev. Lett. 85, 2733-2736 (2000
    [CrossRef] [PubMed]
  4. G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, �??Comment on Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,�?? Phys. Rev. Lett. 86, 1389 (2001)
    [CrossRef] [PubMed]
  5. G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, �??Entangled-state lithography: Tailoring any pattern with a single state,�?? Phys. Rev. Lett. 86, 4516-4519 (2001)
    [CrossRef] [PubMed]
  6. C.C. Gerry, �??Enhanced generation of twin single-photon states via quantum interference in parametric down conversion: Application to two-photon quantum photolithography,�?? Phys. Rev. A 67, 043801 (2003)
    [CrossRef]
  7. M. D�??Angelo, M. V. Chekhova, and Y. Shih, �??Two-photon diffraction and quantum lithography,�?? Phys. Rev. Lett. 87, 013602 (2001)
    [CrossRef]
  8. E. J. S. Fonseca, C. H. Monken, and S. Pádua, �??Measurement of the de Broglie wavelength of a multiphoton wave packet,�?? Phys. Rev. Lett. 82, 2868-2871 (1999)
    [CrossRef]
  9. K. Edamatsu, R. Shimizu, and T. Itoh, �??Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,�?? Phys. Rev. Lett. 89, 213601 (2002)
    [CrossRef] [PubMed]
  10. E. M. Nagasako, S. J. Bentley and R. W. Boyd, and G. S. Agarwal, �??Non classical two-photon interferometry and lithography with high-gain optical parametric amplifiers,�?? Phys. Rev. A 64, 043802 (2001)
    [CrossRef]
  11. E. M. Nagasako, S. J. Bentley and R. W. Boyd, and G. S. Agarwal, �??Parametric down conversion vs. optical parametric amplification: A comparison of their quantum statistics,�?? J. Mod. Opt. 49, 529-537 (2002)
    [CrossRef]
  12. H. Ooki, M. Komatsu, and M. Shibuya, �??A novel super-resolution technique for optical lithography�??nonlinear multiple exposure method,�?? Jpn. J. Appl. Phys. 33, L177-L179 (1994)
    [CrossRef]
  13. E. Yablonovitch and R. B. Vrijen, �??Optical projection lithography at half the Rayleigh resolution limit by two photon exposure,�?? Opt. Eng. 38, 334-338 (1999)
    [CrossRef]
  14. D. Korobkin and E. Yablonovitch, �??Two-fold spatial resolution enhancement by two-photon exposure of photographic film,�?? Opt. Eng. 41, 1729-1732 (2002)
    [CrossRef]
  15. F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, �??Superresolution of pulsed multiphoton Raman transitions,�?? Phys. Rev. Lett. 87, 113601 (2001)
    [CrossRef] [PubMed]
  16. P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, �??Quantum interferometric optical lithography: Towards arbitrary two-dimensional patterns,�?? Phys. Rev. A 63, 063407 (2001)
    [CrossRef]

J. Mod. Opt.

E. M. Nagasako, S. J. Bentley and R. W. Boyd, and G. S. Agarwal, �??Parametric down conversion vs. optical parametric amplification: A comparison of their quantum statistics,�?? J. Mod. Opt. 49, 529-537 (2002)
[CrossRef]

Jpn. J. Appl. Phys.

H. Ooki, M. Komatsu, and M. Shibuya, �??A novel super-resolution technique for optical lithography�??nonlinear multiple exposure method,�?? Jpn. J. Appl. Phys. 33, L177-L179 (1994)
[CrossRef]

Microelectron. Eng.

S. R. J. Brueck, S. H. Zaidi, X. Chen, and Z. Zhang, �??Interferometric lithography �??�?? from periodic arrays to arbitrary patterns,�?? Microelectron. Eng. 42, 145-148 (1998).
[CrossRef]

Opt. Eng.

E. Yablonovitch and R. B. Vrijen, �??Optical projection lithography at half the Rayleigh resolution limit by two photon exposure,�?? Opt. Eng. 38, 334-338 (1999)
[CrossRef]

D. Korobkin and E. Yablonovitch, �??Two-fold spatial resolution enhancement by two-photon exposure of photographic film,�?? Opt. Eng. 41, 1729-1732 (2002)
[CrossRef]

Phil. Mag.

Lord Rayleigh, �??Investigations in optics with special reference to the spectroscope,�?? Phil. Mag. 8, 261-274 (1879)
[CrossRef]

Phys. Rev.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, �??Quantum interferometric optical lithography: Towards arbitrary two-dimensional patterns,�?? Phys. Rev. A 63, 063407 (2001)
[CrossRef]

Phys. Rev. A

E. M. Nagasako, S. J. Bentley and R. W. Boyd, and G. S. Agarwal, �??Non classical two-photon interferometry and lithography with high-gain optical parametric amplifiers,�?? Phys. Rev. A 64, 043802 (2001)
[CrossRef]

C.C. Gerry, �??Enhanced generation of twin single-photon states via quantum interference in parametric down conversion: Application to two-photon quantum photolithography,�?? Phys. Rev. A 67, 043801 (2003)
[CrossRef]

Phys. Rev. Lett.

M. D�??Angelo, M. V. Chekhova, and Y. Shih, �??Two-photon diffraction and quantum lithography,�?? Phys. Rev. Lett. 87, 013602 (2001)
[CrossRef]

E. J. S. Fonseca, C. H. Monken, and S. Pádua, �??Measurement of the de Broglie wavelength of a multiphoton wave packet,�?? Phys. Rev. Lett. 82, 2868-2871 (1999)
[CrossRef]

K. Edamatsu, R. Shimizu, and T. Itoh, �??Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,�?? Phys. Rev. Lett. 89, 213601 (2002)
[CrossRef] [PubMed]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, �??N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, �??Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit" Phys. Rev. Lett. 85, 2733-2736 (2000
[CrossRef] [PubMed]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, �??Comment on Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,�?? Phys. Rev. Lett. 86, 1389 (2001)
[CrossRef] [PubMed]

F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz, �??Superresolution of pulsed multiphoton Raman transitions,�?? Phys. Rev. Lett. 87, 113601 (2001)
[CrossRef] [PubMed]

Phys. Rev.Lett.

G. Bjork, L.L. Sanchez-Soto, and J. Soderholm, �??Entangled-state lithography: Tailoring any pattern with a single state,�?? Phys. Rev. Lett. 86, 4516-4519 (2001)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the method.

Fig. 2.
Fig. 2.

Experimental set-up.

Fig. 3.
Fig. 3.

Measured intensity distributions for (a) M=N=1, (b) M=1, N=2, (c) M=1, N=3, (d) M=N=2, (e) M=2, N=3, and (f) M=N=3. Note that the first three patterns have the same period (because M=1) but that the fringes become sharper with increasing N. Note also the doubling of the fundamental frequency in (d) and (e) and the tripling of the frequency in (f).

Tables (1)

Tables Icon

Table 1. Visibility as a function of resolution and absorption process.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ k = 2 π k M .
I ( N , M ) = K = 1 M ( E k E k * ) N
E k = e i π x χ + e i π x χ e i Δ ϕ k .
V = A M , N + A M H o A 0 , N + A M H e ,
A k , N = ( 2 N ) ! [ ( N k ) ! ( N + k ) ! ] ( k 0 )
A 0 , N = ( 2 N ) ! [ 2 ( N ! ) 2 ]

Metrics