Abstract

Numerical analysis predicts that continuous-wave Raman lasing is possible in silicon-on-insulator (SOI) waveguides, in spite of the detrimental presence of two-photon absorption and free-carrier absorption. We discuss in particular the dependence of the lasing characteristics of SOI Raman lasers on the effective lifetime of the free carriers generated by two-photon absorption. It is shown that the pump-power-dependent cavity losses lead to a rollover of the output-power characteristics at a certain pump-power level and that there exists an upper shutdown threshold at which the laser operation breaks down.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, �??Observation of stimulated Raman amplifi- cation in silicon waveguides,�?? Opt. Express 11(15), 1731�??1739 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731<a/>.
    [CrossRef]
  2. R. L. Espinola, J. I. Dadap, J. Richard M. Osgood, S. J. McNab, and Y. A. Vlasov, �??Raman amplification in ultrasmall silicon-on-insulator wire waveguides,�?? Opt. Express 12(16), 3713�??3718 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713<a/>.
    [CrossRef]
  3. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85(12), 2196�??2198 (2004).
    [CrossRef]
  4. Q. Xu, V. R. Almeida, and M. Lipson, �??Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,�?? Opt. Express 12(19), 4437�??4442 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437<a/>.
    [CrossRef]
  5. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, �??Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Express 12(18), 4261�??4268 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261<a/>.
    [CrossRef]
  6. B. Jalali, V. Raghunathan, O. Boyraz, R. Claps, and D. Dimitripoulos, �??Wavelength Conversion and Light Amplification in Silicon Waveguides,�?? presented at the First International Conference on Group IV Photonics (GFP), Kowloon, Hong Kong, 29 Sept.�??1 Oct. 2004, Invited Paper WA3.
  7. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman ampli- fication in Silicon waveguides,�?? Opt. Express 12(12), 2774�??2780 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774<a/>.
    [CrossRef]
  8. T. K. Liang and H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84(15), 2745�??2747 (2004).
    [CrossRef]
  9. O. Boyraz and B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12(21), 5269�??5273 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269<a/>.
    [CrossRef]
  10. J. AuYeung and A. Yariv, �??Theory of cw Raman oscillation in optical fibers,�?? J. Opt. Soc. Am. 69(6), 803�??807 (1979).
    [CrossRef]
  11. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, �??Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,�?? J. Lightwave Technol. 15(3), 505�??518 (1997).
    [CrossRef]
  12. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Raman emission in silicon waveguides: Prospects for a silicon amplifier and laser,�?? in Conference on Lasers and Electro-Optics (CLEO) (2003). Paper CWL5.

Appl. Phys. Lett. (2)

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, �??Raman gain and nonlinear optical absorption measurement in a low-loss silicon waveguide,�?? Appl. Phys. Lett. 85(12), 2196�??2198 (2004).
[CrossRef]

T. K. Liang and H. K. Tsang, �??Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,�?? Appl. Phys. Lett. 84(15), 2745�??2747 (2004).
[CrossRef]

CLEO (1)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Raman emission in silicon waveguides: Prospects for a silicon amplifier and laser,�?? in Conference on Lasers and Electro-Optics (CLEO) (2003). Paper CWL5.

Conference on Group IV Photonics (1)

B. Jalali, V. Raghunathan, O. Boyraz, R. Claps, and D. Dimitripoulos, �??Wavelength Conversion and Light Amplification in Silicon Waveguides,�?? presented at the First International Conference on Group IV Photonics (GFP), Kowloon, Hong Kong, 29 Sept.�??1 Oct. 2004, Invited Paper WA3.

J. Lightwave Technol. (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, �??Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,�?? J. Lightwave Technol. 15(3), 505�??518 (1997).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (6)

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, �??Influence of nonlinear absorption on Raman ampli- fication in Silicon waveguides,�?? Opt. Express 12(12), 2774�??2780 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774<a/>.
[CrossRef]

O. Boyraz and B. Jalali, �??Demonstration of a silicon Raman laser,�?? Opt. Express 12(21), 5269�??5273 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5269<a/>.
[CrossRef]

Q. Xu, V. R. Almeida, and M. Lipson, �??Time-resolved study of Raman gain in highly confined silicon-oninsulator waveguides,�?? Opt. Express 12(19), 4437�??4442 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4437<a/>.
[CrossRef]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, �??Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering,�?? Opt. Express 12(18), 4261�??4268 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-18-4261<a/>.
[CrossRef]

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, �??Observation of stimulated Raman amplifi- cation in silicon waveguides,�?? Opt. Express 11(15), 1731�??1739 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731<a/>.
[CrossRef]

R. L. Espinola, J. I. Dadap, J. Richard M. Osgood, S. J. McNab, and Y. A. Vlasov, �??Raman amplification in ultrasmall silicon-on-insulator wire waveguides,�?? Opt. Express 12(16), 3713�??3718 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3713<a/>.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic setup of an SOI Raman laser.

Fig. 2.
Fig. 2.

Calculated (solid curve, this work) and measured (marks, Ref. [3]) on-off Raman gain for the Raman amplifier presented in Ref. [3].

Fig. 3.
Fig. 3.

Threshold pump power of SOI Raman lasers versus chip length L. End-face reflectivities are 30%, and free-carrier absorption is assumed to be negligible (τeff=0). Solid curves: No two-photon absorption (β=0). Dashed curves: With two-photon absorption, β=0.7cm/GW.

Fig. 4.
Fig. 4.

Threshold pump power of SOI Raman lasers versus chip length L for several values of the effective carrier lifetime τeff and α=1.0dB/cm. The solid and dotted curves show, for a given τeff, the lasing and shutdown thresholds, respectively. The dashed curve, included for comparison, shows the threshold in the absence of TPA and FCA.

Fig. 5.
Fig. 5.

Input-output characteristics of SOI Raman lasers with L=55mm and several values of the effective carrier lifetime τeff. The dashed curve corresponds to absence of TPA and FCA. The inset shows a zoom into the characteristics corresponding to large τeff.

Fig. 6.
Fig. 6.

Threshold pump power versus chip length L (left) and input-output characteristics at L=35mm (right) of SOI Raman lasers for several effective carrier lifetimes τeff. The only changes in the laser configuration against Figs. 4 and 5 are Stokes reflectivites of 80%, and left-hand and right-hand pump reflectivities of 0% and 100%, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

± d P p ± d z = { α g A eff λ s λ p ( P s + + P s ) β A eff [ P p ± + 2 ( P p + P s + + P s ) ] φ ̅ λ p 2 N ̅ eff } P p ±
± d P s ± d z = { α + g A eff ( P p + + P p ) β A eff [ P s ± + 2 ( P s + P p + + P p ) ] φ ̅ λ s 2 N ̅ eff } P s ±
A eff = [ I ( x , y ) d x d y ] 2 I 2 ( x , y ) d x d y ,
N ̅ eff ( z ) = β τ eff 2 h ν p A eff 2 { P p + 2 + P p 2 + P s + 2 + P s −2 + 4 [ P p + P p + P s + P s + ( P p + + P p ) ( P s + + P s ) ] } ,
P p + ( 0 ) = T p P 0 + R p , l P p ( 0 ) , P p ( L ) = R p , r P p + ( L ) ,
P s + ( 0 ) = R s , l P s ( 0 ) , P s ( L ) = R s , r P s + ( L )
P p + ( 0 ) = T p P 0 , P p ( 0 ) = 0 ,
P s + ( 0 ) = T s P probe , P s ( 0 ) = 0 .
± d P p ± d z = { α φ ̅ λ p 2 N ̅ eff β A eff [ P p ± + 2 P p ] } P p ± ,
± d P s ± d z = { α φ ̅ λ s 2 N ̅ eff + g 2 β A eff [ P p + + P p ] } P s ± ,
N ̅ eff ( z ) = β τ eff 2 h ν p A eff 2 ( P p + 2 + P p 2 + 4 P p + P p ) .
R s , l R s , r exp { 2 0 L α φ ̅ λ s 2 N ̅ eff ( z ) + g 2 β A eff [ P p + ( z ) + P p ( z ) ] d z } = 1 .

Metrics