Abstract

A first experimental demonstration of a planar superprism in silicon microphotonics technology using silicon on insulator (SOI) substrates is presented. Experimental results for anomalous wavelength-dependent angular dispersion in SOI triangular lattice planar photonic crystals are reported. An angular swing of 14° is measured for light propagating near the Γ-K direction as the input wavelength is changed from 1295 nm to 1330 nm, which corresponds to an angular dispersion of 0.4°/nm. For the Γ-M direction, a negative wavelength dispersion has been recorded. An opposite sign angular deviation of 21° is observed as the input wavelength is changed from 1316 nm to 1332 nm, i.e. a dispersion of 1.3°/nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S.Y. Lin, V.M Hietala, L. Wang, E.D. Jones, �??Highly dispersive photonic band-gap prism,�?? Opt. Lett. 21, 1771- 1773, (1996).
    [CrossRef] [PubMed]
  2. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett., 77, 1937-1939, (2000).
    [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B, 58, 10096�??10099, (1998).
    [CrossRef]
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,�?? Appl. Phys. Lett., 74, 1370�?? 1372, (1999).
    [CrossRef]
  5. T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect,�?? IEEE Journ. of Quant. Electron., 38, 909-914, (2002).
    [CrossRef]
  6. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism Phenomena in Planar Photonic Crystals,�?? IEEE Journ. of Quant. Electron., 38, 915-918 (2002).
    [CrossRef]
  7. L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator,�?? Photonic and Nanostructures, 1, 31-36 (2003).
    [CrossRef]
  8. J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, �??Visiblewavelength super-refraction in photonic crystal superprisms,�?? Appl. Phys. Lett., 85, 354-356 (2004).
    [CrossRef]
  9. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, �??Coupled guide and cavity in a two-dimensional photonic crystal,�?? App. Phys. Lett. 78, 1487-1489 (2001).
    [CrossRef]

App. Phys. Lett.

C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, �??Coupled guide and cavity in a two-dimensional photonic crystal,�?? App. Phys. Lett. 78, 1487-1489 (2001).
[CrossRef]

Appl. Phys. Lett.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, T. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett., 77, 1937-1939, (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,�?? Appl. Phys. Lett., 74, 1370�?? 1372, (1999).
[CrossRef]

J. J. Baumberg, N. M. B. Perney, M. C. Netti, M. D. C. Charlton, M. Zoorob, and G. J. Parker, �??Visiblewavelength super-refraction in photonic crystal superprisms,�?? Appl. Phys. Lett., 85, 354-356 (2004).
[CrossRef]

IEEE Journ. of Quant. Electron.

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect,�?? IEEE Journ. of Quant. Electron., 38, 909-914, (2002).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism Phenomena in Planar Photonic Crystals,�?? IEEE Journ. of Quant. Electron., 38, 915-918 (2002).
[CrossRef]

Opt. Lett.

Photonic and Nanostructures

L. Wu, M. Mazilu, J.-F. Gallet, and T. F. Krauss, "Square lattice photonic crystal collimator,�?? Photonic and Nanostructures, 1, 31-36 (2003).
[CrossRef]

Phys. Rev. B

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Superprism phenomena in photonic crystals,�?? Phys. Rev. B, 58, 10096�??10099, (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scanning electron microscope photograph of an etched waveguide.

Fig. 2.(a)
Fig. 2.(a)

Optical microscope photograph of photonic crystal area with the set of input and output waveguides.

Fig. 2.(b)
Fig. 2.(b)

Scanning electron microscope view of the photonic crystal area.

Fig. 3.(a)
Fig. 3.(a)

IR vidicon camera photographs of the output light spots at different wavelengths for 30° input incidence angle.

Fig. 3.(b)
Fig. 3.(b)

IR vidicon camera photographs of the output light spots at different wavelengths for 45° input incidence angle.

Fig. 4.
Fig. 4.

Transmission spectra at 30° input angle for different output waveguides: (a) 21.0° output angle. (b) 24.5° output angle. (c) 28.0° output angle. (d) 31.5° output angle. (e) 35.0° output angle. (Transmission spectrum at 31.5° is also displayed on the graphs for the sake of comparison).

Fig. 5.
Fig. 5.

Transmission spectra at 45° input angle for different output waveguides: (a) 42.0° output angle. (b) 45.5° output angle. (c) 49.0° output angle. (d) 52.5° output angle. (e) 56.0° output angle. (f) 59.5° output angle. (g) 63.0° output angle. (Transmission spectrum at 56.0° is also displayed on the graphs for the sake of comparison).

Fig. 6.(a).
Fig. 6.(a).

Angular dispersion for 30° input angle.

Fig. 6.(b).
Fig. 6.(b).

Angular dispersion for 45° input angle.

Metrics