Abstract

Significant motion artifacts may arise in conventional spectral-domain optical coherence tomography due to sample or probe motion during the exposure time of a CCD array. We show, for the first time to our knowledge, that the motion artifacts can be greatly reduced by short illumination of individual CCD pixels and that this can be accomplished by use of two distinct classes of light sources: broadband pulsed sources and cw wavelength-swept sources. We experimentally demonstrate the benefit of these techniques in terms of the reduction of signal fading due to an axially moving sample and fiber-optic catheter at a high rotational speed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt. Comm. 117, 43-48 (1995).
    [CrossRef]
  2. G. Hausler and M. W. Lindner, �??Coherence radar and spectral radar - new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  3. P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, �??Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin,�?? Proc. SPIE 3567, 78-87 (1998).
  4. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, �??Full range complex spectral optical coherence tomography technique in eye imaging,�?? Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  5. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, �??Real time in vivo imaging by high-speed spectral optical coherence tomography,�?? Opt. Lett. 28, 1745-1747 (2003).
    [CrossRef] [PubMed]
  6. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, �??In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,�?? Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  7. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, �??High-speed spectral domain optical coherence tomography at 1.3 μm wavelength,�?? Opt. Express 11, 3598-3604 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>
    [CrossRef] [PubMed]
  8. N. Nassif, B Cense, B. H. Park, S. H. Yun, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, �??In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,�?? Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>
    [CrossRef] [PubMed]
  9. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>
    [CrossRef] [PubMed]
  10. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
    [CrossRef] [PubMed]
  11. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422(2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
    [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, �??Motion artifacts in optical coherence tomography with frequency domain ranging,�?? Opt. Express 12, 2977-2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>
    [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency-domain imaging,�?? Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
    [CrossRef] [PubMed]
  14. W. V. Sorin, �??Noise sources in optical measurements�?? in Fiber optic test and measurement, D. Derickson, ed. (Hewlett Packard Company, Prentice Hall, New Jersey, 1998), pp. 597-613.
  15. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, �??High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,�?? Opt. Lett. 28, 1981-1983 (2003).
    [CrossRef] [PubMed]
  16. American National Standards Institute, American National Standard for Safe Use of Lasers Z136.1. 2000: Orlando.
  17. B. E. A. Saleh and M. C. Teich, Fundamental of photonics, ch 14 (John Wiley & Sons, New York, 1991).
  18. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, �??Supercontinuum self-Q-switched ytterbium fiber laser,�?? Opt. Lett. 22, 298-300 (1997).
    [CrossRef] [PubMed]
  19. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
    [CrossRef] [PubMed]
  20. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, �??Ultrahigh-resolution full-field optical coherence tomography,�?? Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef] [PubMed]
  21. B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, �??Tunable near-infrared femtoseconds soliton generation in photonic crystal fibres,�?? Electron. Lett. 37, 1511-1512 (2001).
    [CrossRef]
  22. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, �??Tunable, femtoseconds pulse source operating in the range 1.06-1.33 mm based on an Yb3+-doped holey fiber amplifier,�?? J. Opt. Soc. Am. B 19, 1286-1293 (2002).
    [CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, �??Tunable near-infrared femtoseconds soliton generation in photonic crystal fibres,�?? Electron. Lett. 37, 1511-1512 (2001).
[CrossRef]

J. Biomed. Opt. (1)

G. Hausler and M. W. Lindner, �??Coherence radar and spectral radar - new tools for dermatological diagnosis,�?? J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Comm. (1)

A.F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, �??Measurement of intraocular distances by backscattering spectral interferometry,�?? Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Opt. Express (8)

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422(2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, �??Motion artifacts in optical coherence tomography with frequency domain ranging,�?? Opt. Express 12, 2977-2998 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2977</a>
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, �??High-speed optical frequency-domain imaging,�?? Opt. Express 11, 2953-2963 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953</a>
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, �??High-speed spectral domain optical coherence tomography at 1.3 μm wavelength,�?? Opt. Express 11, 3598-3604 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598</a>
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, �??Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,�?? Opt. Express 12, 299-309 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299</a>
[CrossRef] [PubMed]

N. Nassif, B Cense, B. H. Park, S. H. Yun, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, �??In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,�?? Opt. Express 12, 367-376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>
[CrossRef] [PubMed]

Opt. Lett. (5)

Proc. SPIE (1)

P. Andretzky, M. W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. Hausler, �??Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin,�?? Proc. SPIE 3567, 78-87 (1998).

Other (3)

W. V. Sorin, �??Noise sources in optical measurements�?? in Fiber optic test and measurement, D. Derickson, ed. (Hewlett Packard Company, Prentice Hall, New Jersey, 1998), pp. 597-613.

American National Standards Institute, American National Standard for Safe Use of Lasers Z136.1. 2000: Orlando.

B. E. A. Saleh and M. C. Teich, Fundamental of photonics, ch 14 (John Wiley & Sons, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Detection of (a) cw, (b) pulsed, and (c) swept light with a CCD array in a spectrometer.

Fig. 2.
Fig. 2.

Experimental configurations of (a) the pulsed ASE source and (b) wavelength-swept source.

Fig. 3.
Fig. 3.

Temporal and spectral output characteristics of the pulsed ASE source, (a) and (b), and the swept source, (c) and (d), respectively. The horizontal bars (green) represent the electrical integration time of the CCD camera.

Fig. 4.
Fig. 4.

Schematic of the experimental SD OCT system. F, fixed wavelength filter; pol, polarizer; PC, polarization controller; ND, neutral density filter; LSC, line scan camera; DAQ, data acquisition board.

Fig. 5.
Fig. 5.

SD-OCT images of a paper, acquired when the sample was static and moving at 80 Hz over 0.7 mm with three different light sources. Signal fading appears distinctly in image b obtained with cw ASE, but was greatly reduced with the pulsed source, d, and was not observed with the swept source, f.

Fig. 6.
Fig. 6.

Variations of total signal power, a sum of reflectivity of 256 depth points in each A-line, as a function of A-line index or time, obtained from (a) images a and b in Fig. 5, (b) c and d, (c) e and f in Fig. 5. Blue line: stationary sample, black line: moving sample, red line: theoretical curve.

Fig. 7.
Fig. 7.

SD-OCT images of a human coronary artery in vitro acquired with a fiber-optic rotational catheter at an A-line rate of 18.94 kHz. The rotation speed of the catheter and the light source that were used for each image are as follows. A; (4.5 rps, cw ASE source), B; (37.9 rps, cw ASE source), C; (4.5 rps, swept source), and C; (37.9 rps, swept source). Catheter-induced signal fading is distinct in B, however is nearly unnoticeable in D.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S 0 T P ( t ) e j 2 k 0 v z t dt 2 0 T P ( t ) dt 2 ,

Metrics