Abstract

The micromanipulation of objects into 3-dimensional geometries within holographic optical tweezers is carried out using modified Gerchberg-Saxton (GS) and direct binary search (DBS) algorithms to produce the hologram designs. The algorithms calculate sequences of phase holograms, which are implemented using a spatial light modulator, to reconfigure the geometries of optical traps in many planes simultaneously. The GS algorithm is able to calculate holograms quickly from the initial, intermediate and final trap positions. In contrast, the DBS algorithm is slower and therefore used to pre-calculate the holograms, which are then displayed in sequence. Assembly of objects in a variety of 3-D configurations is semi-automated, once the traps in their initial positions are loaded.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkman and S. Chu, �??Observation of a single-beam gradient force optical trap for dielectric particles�?? Opt. Lett. 11, 288-290, (1986).
    [CrossRef] [PubMed]
  2. J. E. Molloy and M. J. Padgett, �??Lights, action: optical tweezers�?? Contemp. Phys. 43, 241-258 (2002).
    [CrossRef]
  3. D. G. Grier, �??A revolution in optical manipulation�?? Nature, 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. J. E. Curtis, B. A. Koss and D. G. Grier, �??Dynamic holographic optical tweezers�?? Opt. Commun. 207, 169- 175 (2002).
    [CrossRef]
  5. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop and M. J. Wegner, �??Laser-beams with phase singularities�?? Opt. Quantum Electron. 24, S951-S962 (1992).
    [CrossRef]
  6. J. Glückstad, �??Phase contrast image synthesis�?? Opt. Commun. 130, 225-230 (1996).
    [CrossRef]
  7. M. Reicherter, T. Haist, E. U. Wagemann and H. J. Tiziani, �??Optical particle trapping with computer generated holograms written on a liquid crystal display�?? Opt. Lett. 24, 608-610 (1999).
    [CrossRef]
  8. G. Gibson, J. Courtial, M. Vasnetsov, S. Barnett, S. Franke-Arnold and M. Padgett, �??Increasing the data density of free-space optical communications using orbital angular momentum�?? Proc. SPIE 5550, In Press.
  9. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett and J. Courtial, �??Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for threedimensional light shaping�?? Opt. Express 12, 1665-1670 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1665">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1665<a/>.
    [CrossRef] [PubMed]
  10. M. A. Seldowitz, J. P. Allebach and D. W. Sweeney, �??Synthesis of digital holograms by direct binary search�?? Appl. Opt. 26, 2788-2798 (1987).
    [CrossRef] [PubMed]
  11. R. A. Gabel and B. Liu, �??Minimization of reconstruction errors with computer generated binary holograms�?? Appl. Opt. 9, 1180-1190 (1970).
    [CrossRef] [PubMed]
  12. K. Nagashima, �??3D computer-generated holograms using 1D Fourier transform operations�?? Opt. Laser Technol. 30, 361-366 (1998).
    [CrossRef]
  13. R. W. Gerchberg and W. O. Saxton, �??A practical algorithm for the determination of the from image and diffraction plane pictures�?? Optik 35, 237-246 (1972).
  14. Z. J. Laczik, �??3D beam shaping using diffractive optical elements�?? Proc. SPIE 4770, 104-111 (2002)
    [CrossRef]
  15. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Copper and Z. J. Laczik, �??3D mainpulationn of particles into crystal structures using holographic optical tweezers�?? Opt. Express 12, 220-226 (2004). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-220<a/>.
    [CrossRef] [PubMed]
  16. P. Jordan, H. Clare, L. Flendrig, J. Leach, J. Cooper and M. Padgett, �??Permanent 3D structures in a polymeric host created using holographic optical tweezers�?? J. Mod. Opt. 51, 627-632 (2004).

Appl. Opt. (2)

Contemp. Phys. (1)

J. E. Molloy and M. J. Padgett, �??Lights, action: optical tweezers�?? Contemp. Phys. 43, 241-258 (2002).
[CrossRef]

J. Mod. Opt. (1)

P. Jordan, H. Clare, L. Flendrig, J. Leach, J. Cooper and M. Padgett, �??Permanent 3D structures in a polymeric host created using holographic optical tweezers�?? J. Mod. Opt. 51, 627-632 (2004).

Nature (1)

D. G. Grier, �??A revolution in optical manipulation�?? Nature, 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

J. E. Curtis, B. A. Koss and D. G. Grier, �??Dynamic holographic optical tweezers�?? Opt. Commun. 207, 169- 175 (2002).
[CrossRef]

J. Glückstad, �??Phase contrast image synthesis�?? Opt. Commun. 130, 225-230 (1996).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

K. Nagashima, �??3D computer-generated holograms using 1D Fourier transform operations�?? Opt. Laser Technol. 30, 361-366 (1998).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop and M. J. Wegner, �??Laser-beams with phase singularities�?? Opt. Quantum Electron. 24, S951-S962 (1992).
[CrossRef]

Optik (1)

R. W. Gerchberg and W. O. Saxton, �??A practical algorithm for the determination of the from image and diffraction plane pictures�?? Optik 35, 237-246 (1972).

Proc. SPIE (2)

Z. J. Laczik, �??3D beam shaping using diffractive optical elements�?? Proc. SPIE 4770, 104-111 (2002)
[CrossRef]

G. Gibson, J. Courtial, M. Vasnetsov, S. Barnett, S. Franke-Arnold and M. Padgett, �??Increasing the data density of free-space optical communications using orbital angular momentum�?? Proc. SPIE 5550, In Press.

Supplementary Material (4)

» Media 1: MPG (2280 KB)     
» Media 2: MPG (839 KB)     
» Media 3: MPG (2259 KB)     
» Media 4: MPG (2155 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

[2.3MB] Sequence of video frames showing nine 2µm silica spheres morphed to form three triangles with 5µm side lengths stacked in three planes, with 6µm between planes. The times at which each frame was taken is shown in the top corner.

Fig. 2.
Fig. 2.

[0.85MB] Sequence of video frames showing twenty-seven 1µm silica spheres initially trapped in three lines of nine spheres and morphed to form three grids of 3 by 3 in three different planes, separated by 8µm. The times at which each frame was taken is shown in the top corner.

Fig. 3.
Fig. 3.

[2.6MB] Sequence of video frames showing the morphing of 15µm diamond unit cell made from eighteen 1µm silica spheres. The whole sequence took 5 minutes to complete.

Fig. 4.
Fig. 4.

[2.2MB] Sequence of video frames showing the morphing of a 15µm zincblendee unit cell made from fourteen 1µm and four 2µm silica spheres. The whole sequence took 5 minutes to complete.

Metrics