Abstract

Optical tweezers system has aggrandized the understanding of the light-matter interaction and is used frequently to transfer angular momentum of light to microscopic particles. Here we demonstrate experimentally, for the first time to our knowledge the use of self-imaged bottle beam in an optical tweezers system and we report the mechanical transfer of ‘pure’ on-axis spin angular momentum to an absorptive particle. The self-imaged bottle beam has embedded optical bottles or null intensity points where the absorptive particles are trapped and the transfer of spin angular momentum is accomplished without the default transfer of orbital angular momentum of a singular beam, which are used conventionally to trap absorptive particles.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Beth, �??Mechanical detection and measurement of the angular momentum of light,�?? Phy. Rev. 50, 115-125 (1936).
    [CrossRef]
  2. L. Allen, M.W Beijersbergen, R.J. C. Speeuw, and J.P. Woerdman, �??Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phy. Rev. A 45, 8185-8189 (1992).
    [CrossRef]
  3. H. He, M. E. J. Friese, N. R. Heckenberg, and H . Rubinsztein-Dunlop, �??Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826-829 (1995).
    [CrossRef] [PubMed]
  4. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg and H. Rubinsztein-Dunlop, �??Alignment or spinning of laser-trapped microscopic waveplates,�??' Nature 394, 348-350 (1998).
    [CrossRef]
  5. O'Neil AT, MacVicar I, Allen L and Padgett MJ, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett. 88, 053601 (2002).
    [CrossRef]
  6. V. Garcés-Chávez, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer and K. Dholakia, �??Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,�?? Phys. Rev. Lett. 91, 093602 (2003).
    [CrossRef] [PubMed]
  7. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett and K. Dholakia, �??Transfer of orbital angular momentum to an optically trapped low-index particle,�?? Phys. Rev. A, 66, 063402 (2002).
    [CrossRef]
  8. N. B. Simpson, K. Dholakia, L. Allen and M. J. Padgett, �??Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,�?? Opt. Lett. 22, 52-54 (1997).
    [CrossRef] [PubMed]
  9. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop and N. R. Heckenberg, �??Optical angular-momentum transfer to trapped absorbing particles,�?? Phy. Rev. A 54, 1593-1596 (1996)
    [CrossRef]
  10. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura and H. Masuhara, �??Optical trapping of a metal particle and a water droplet by a scanning laser beam,�?? Appl. Phys. Lett. 60, 807-809 (1992).
    [CrossRef]
  11. Anna T. O�??Neil and Miles J. Padgett, �??Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,�?? Opt. Commun. 185, 139-143 (2000).
    [CrossRef]
  12. H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J Friese and N. R. Heckenberg, �??Optical trapping of abosorbing particles,�?? Adv. In Quant. Chem. 30, 469-492 (1998).
    [CrossRef]
  13. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg and H. Rubinsztein-Dunlop, �??Optical torque controlled by elliptical polarization,�?? Opt. Lett. 23, 1-3 (1998).
    [CrossRef]
  14. Z. Bouchal and J. Wagner, �??Self-reconstruction effect in free propagation of wavefield,�?? Opt. Commun. 176, 299-307 (2000).
    [CrossRef]
  15. J. Arlt and M. J. Padgett, �??Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,�?? Opt. Lett. 25, 191-193 (2000).
    [CrossRef]
  16. D. McGloin, G.C. Spalding, H. Melville, W. Sibbett and K. Dholakia, �??Three-dimensional arrays of optical bottle beams,�?? Opt. Commun. 225, 215-222 (2003).
    [CrossRef]
  17. B. P. S. Ahluwalia, X. - C. Yuan, and S. H. Tao, �??Generation of self-imaged optical bottle beams,�?? Opt. Commun. 238, 177-184 (2004).
    [CrossRef]
  18. O. Bryngdahl, �??Image formation using self-imaging techniques,' J. Opt. Soc. Am. 63, 416-419 (1973).
    [CrossRef]
  19. R. Piestun and J. Shamir,�?? "Generalized propagation invariant wave-fields," J. Opt. Soc Am. A 15, 3039-3044 (1998).
    [CrossRef]
  20. J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dholakia, �??Optical micro-manipulation using a Bessel light beam,�?? Opt. Commun. 197, 239-245 (2001).
    [CrossRef]
  21. L. Allen and M. J. Padgett, �??The Poynting vector in Laguerre�??Gaussian beams and the interpretation of their angular momentum density,�?? Opt. Commun. 184, 67-71 (2000).
    [CrossRef]

Adv. In Quant. Chem.

H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J Friese and N. R. Heckenberg, �??Optical trapping of abosorbing particles,�?? Adv. In Quant. Chem. 30, 469-492 (1998).
[CrossRef]

Appl. Phys. Lett.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura and H. Masuhara, �??Optical trapping of a metal particle and a water droplet by a scanning laser beam,�?? Appl. Phys. Lett. 60, 807-809 (1992).
[CrossRef]

J. Opt. Soc Am. A

R. Piestun and J. Shamir,�?? "Generalized propagation invariant wave-fields," J. Opt. Soc Am. A 15, 3039-3044 (1998).
[CrossRef]

J. Opt. Soc. Am.

Nature

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg and H. Rubinsztein-Dunlop, �??Alignment or spinning of laser-trapped microscopic waveplates,�??' Nature 394, 348-350 (1998).
[CrossRef]

Opt. Commun.

Anna T. O�??Neil and Miles J. Padgett, �??Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,�?? Opt. Commun. 185, 139-143 (2000).
[CrossRef]

J. Arlt, V. Garces-Chavez, W. Sibbett and K. Dholakia, �??Optical micro-manipulation using a Bessel light beam,�?? Opt. Commun. 197, 239-245 (2001).
[CrossRef]

L. Allen and M. J. Padgett, �??The Poynting vector in Laguerre�??Gaussian beams and the interpretation of their angular momentum density,�?? Opt. Commun. 184, 67-71 (2000).
[CrossRef]

Z. Bouchal and J. Wagner, �??Self-reconstruction effect in free propagation of wavefield,�?? Opt. Commun. 176, 299-307 (2000).
[CrossRef]

D. McGloin, G.C. Spalding, H. Melville, W. Sibbett and K. Dholakia, �??Three-dimensional arrays of optical bottle beams,�?? Opt. Commun. 225, 215-222 (2003).
[CrossRef]

B. P. S. Ahluwalia, X. - C. Yuan, and S. H. Tao, �??Generation of self-imaged optical bottle beams,�?? Opt. Commun. 238, 177-184 (2004).
[CrossRef]

Opt. Lett.

Phy. Rev.

R. Beth, �??Mechanical detection and measurement of the angular momentum of light,�?? Phy. Rev. 50, 115-125 (1936).
[CrossRef]

Phy. Rev. A

L. Allen, M.W Beijersbergen, R.J. C. Speeuw, and J.P. Woerdman, �??Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,�?? Phy. Rev. A 45, 8185-8189 (1992).
[CrossRef]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop and N. R. Heckenberg, �??Optical angular-momentum transfer to trapped absorbing particles,�?? Phy. Rev. A 54, 1593-1596 (1996)
[CrossRef]

Phys. Rev. A

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett and K. Dholakia, �??Transfer of orbital angular momentum to an optically trapped low-index particle,�?? Phys. Rev. A, 66, 063402 (2002).
[CrossRef]

Phys. Rev. Lett.

H. He, M. E. J. Friese, N. R. Heckenberg, and H . Rubinsztein-Dunlop, �??Direct observation of transfer of angular-momentum to absorptive particles from a laser-beam with a phase singularity,�?? Phys. Rev. Lett. 75, 826-829 (1995).
[CrossRef] [PubMed]

O'Neil AT, MacVicar I, Allen L and Padgett MJ, �??Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,�?? Phys. Rev. Lett. 88, 053601 (2002).
[CrossRef]

V. Garcés-Chávez, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer and K. Dholakia, �??Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,�?? Phys. Rev. Lett. 91, 093602 (2003).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (1361 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Free space propagation of the self-imaged bottle beam. One full period of the self-imaged bottle beam is shown above with the bottle obtained in Fig. (c-e).

Fig. 2
Fig. 2

(1.32 Mb) Movie of free-space propagation of the self-imaged bottle beam. The movie shows the self-imaged bottle beam embedding two bottles.

Fig. 3.
Fig. 3.

Transverse intensity profile of the self-imaged bottle beam imaged at the sample stage, (a) Bright spot, (b) Dark spot, respectively.

Fig. 4
Fig. 4

Experimental set-up of a self-imaged bottle beam based optical tweezers system. Absorptive particles were stably trapped in the bottle (Point A) and the transfer of spin angular momentum was accomplished.

Fig. 5
Fig. 5

(a–f) Transfer of ‘pure’ on-axis spin angular momentum from a circular polarized self-imaged bottle beam to an absorptive particle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I r z = J 0 ( k r 1 . r ) 2 + J 0 ( k r 1 . r ) 2 + 2 A J o ( k r 1 . r ) . J o ( k r 2 . r ) . cos [ ( k z 1 k z 2 ) z + Δ ]
Ґ = ( P abs . σ z ) ω

Metrics