Abstract

A new silicon based waveguide with full CMOS compatibility is developed to fabricate an on-chip Bragg cladding waveguide that has an oxide core surrounded by a high index contrast cladding layers. The cladding consists of several dielectric bilayers, where each bilayer consists of a high index-contrast pair of layers of Si and Si3N4. This new waveguide guides light based on omnidirectional reflection, reflecting light at any angle or polarization back into the core. Its fabrication is fully compatible with current microelectronics processes. In principle, a core of any low-index material can be realized with our novel structure, including air. Potential applications include tight turning radii, high power transmission, and dispersion compensation.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196 (1978)
    [CrossRef]
  2. P. Yeh, Optical waves in layered media (Wiley, New York, 1988)
  3. C. Martijn de Sterke, I. M. Bassett, and A. G. Street, �??Differential losses in Bragg fibers,�?? J. Appl. Phys. 76, 680 (1994).
    [CrossRef]
  4. P. Yeh, A. Yariv, and C. S. Hong, �??Electromagnetic propagation in periodic stratified media. I. General theory,�?? J. Opt. Soc. Am. 67, 423 (1977)
    [CrossRef]
  5. A. Y. Cho, A. Yariv and P. Yeh, �??Observation of confined propagation in Bragg waveguide�?? Appl. Phys. Lett. 30, 471, (1977)
    [CrossRef]
  6. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987); S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  7. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).
  8. See Photonic Band Gap Materials, C. M. Soukoulis, ed., B308 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996).
    [CrossRef]
  9. J. C. Knight and P. St. J. Russell, �??New ways to guide light,�?? Science 296, 276 (2002).
    [CrossRef] [PubMed]
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537 (1999).
    [CrossRef] [PubMed]
  11. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476 (1998).
    [CrossRef] [PubMed]
  12. M. A. Duguay, Y. Kokubun, T. L. Koch and L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13 (1986)
    [CrossRef]
  13. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, �??Omnidirectional reflection from a one-dimensional photonic crystal,�?? Opt. Lett. 23, 1573 (1998).
    [CrossRef]
  14. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679 (1998).
    [CrossRef] [PubMed]
  15. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, �??Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,�?? Appl. Phys. A 68, 25 (1999).
    [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics (Wiley, 1999)

Appl. Phys. A (1)

D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, �??Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,�?? Appl. Phys. A 68, 25 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

M. A. Duguay, Y. Kokubun, T. L. Koch and L. Pfeiffer, �??Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,�?? Appl. Phys. Lett. 49, 13 (1986)
[CrossRef]

A. Y. Cho, A. Yariv and P. Yeh, �??Observation of confined propagation in Bragg waveguide�?? Appl. Phys. Lett. 30, 471, (1977)
[CrossRef]

J. Appl. Phys. (1)

C. Martijn de Sterke, I. M. Bassett, and A. G. Street, �??Differential losses in Bragg fibers,�?? J. Appl. Phys. 76, 680 (1994).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987); S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Science (4)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679 (1998).
[CrossRef] [PubMed]

J. C. Knight and P. St. J. Russell, �??New ways to guide light,�?? Science 296, 276 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537 (1999).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476 (1998).
[CrossRef] [PubMed]

Other (4)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).

See Photonic Band Gap Materials, C. M. Soukoulis, ed., B308 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996).
[CrossRef]

P. Yeh, Optical waves in layered media (Wiley, New York, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The illustration of the Bragg cladding waveguide, with low index core (SiO2) and Si/Si3N4 as dielectric cladding layers.

Fig. 2.
Fig. 2.

(a) The TEM image of the cladding pairs including the bottom Bragg cladding layers (Si/Si3N4) and SiO2 core. (b) The measurement and simulation on absolute reflectivity of 5 pairs Si/Si3N4 layers.

Fig. 3.
Fig. 3.

(a) The TEM image of the fabricated Bragg cladded channel waveguide. The smooth interface and good conformal step coverage by LPCVD method are clearly seen. (b) The guided spot from the Bragg cladded channel waveguide with dimension 4μm ×4μm, which demonstrated the guidance in the low index SiO2 materials by PBG guiding mechanism.

Metrics