Abstract

We present experimental results on the changes of lines in two-photon photopolymerization microfabrication. Polymerized lines remain straight, become wavy, and even float away with increased focus height as the sample is moved closer to the focusing lens. The influence of the focus height, the incident laser energy, and the scan speed was studied. The lower the incident energy or the faster the scan speed, the more easily the lines become wavy. From the focus height at which the lines become wavy and float away, we can estimate the lateral and longitudinal size of a voxel.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, �??Finer features for functional micro- devices,�?? Nature 412, 697�??698 (2001).
    [CrossRef] [PubMed]
  2. S. Maruo, O. Nakamura, and S. Kawata, �??Three-dimensional microfabrication with two-photon-absorbed photopolymerization,�?? Opt. Lett. 22, 132�??134 (1997).
    [CrossRef] [PubMed]
  3. D. A. Parthenopoulos and P. M. Rentzepis, �??Three-dimensinal optical storage memory,�?? Science 245, 843�??845 (1989).
    [CrossRef] [PubMed]
  4. T. Tanaka, H. B. Sun, and S. Kawata, �??Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,�?? Appl. Phys. Lett. 80, 312�??314 (2002).
    [CrossRef]
  5. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y .S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, �??Two-photon polymerization initiators for three-dimensional optical data storage and microfabriction,�?? Nature 398, 51�??54 (1999).
    [CrossRef]
  6. M. Straub and M. Gu, �??Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,�?? Opt.Lett. 27, 1824�??1826 (2002).
    [CrossRef]
  7. R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, �??Femtosecond two- photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,�?? Laser Phys. 8, 1105�??1108 (1998)
  8. P. Glajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249�??251 (2001).
    [CrossRef]
  9. D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, L. Natarajan, V. Tondiglia, and T. J. Bunning, �??Electrically switchable reflection holograms formed using two-photon photopolymerization, �?? Appl. Phys. A 74, 767�??772 (2002).
    [CrossRef]
  10. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K.Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, �??An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,�?? Science 296, 1106�??1109 (2002).
    [CrossRef] [PubMed]
  11. C. D. Li, L. Luo, S. F.Wang,W. T. Huang, Q. H. Gong, Y. Y. Yang, and S. J. Feng, �??Two-photon microstructure-polymerization initiated by a coumarin derivative/iodonium salt system,�?? Chem. Phys. Lett. 340, 444�??448 (2001).
    [CrossRef]
  12. H. C. Guo, H. B. Jiang, L. Luo, C. Y. Wu, H. C. Guo, X. Wang, Q. H. Gong, F. P. Wu, T. Wang, and M. Q. Shi, �??Two-photon polymerization of gratings by interference of a femtosecond laser pulse,�?? Chem. Phys. Lett. 374, 381�??384 (2003).
    [CrossRef]
  13. H. B. Sun, T. Tanaka, and S. Kawata, �??Three-dimensional focal spots related to two-photon excitation,�?? Appl. Phys. Lett. 80, 3673�??3675 (2002).
    [CrossRef]
  14. H. B. Sun, K. Takada, M.S. Kim, K.S. Lee, and S. Kawata, �??Scaling laws of voxels in two-photon photo- polymerization nanofabrication,�?? Appl. Phys. Lett. 83, 1104�??1106 (2003).
    [CrossRef]

Appl. Phys. A

D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, L. Natarajan, V. Tondiglia, and T. J. Bunning, �??Electrically switchable reflection holograms formed using two-photon photopolymerization, �?? Appl. Phys. A 74, 767�??772 (2002).
[CrossRef]

Appl. Phys. Lett.

T. Tanaka, H. B. Sun, and S. Kawata, �??Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,�?? Appl. Phys. Lett. 80, 312�??314 (2002).
[CrossRef]

H. B. Sun, T. Tanaka, and S. Kawata, �??Three-dimensional focal spots related to two-photon excitation,�?? Appl. Phys. Lett. 80, 3673�??3675 (2002).
[CrossRef]

H. B. Sun, K. Takada, M.S. Kim, K.S. Lee, and S. Kawata, �??Scaling laws of voxels in two-photon photo- polymerization nanofabrication,�?? Appl. Phys. Lett. 83, 1104�??1106 (2003).
[CrossRef]

P. Glajda and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249�??251 (2001).
[CrossRef]

Chem. Phys. Lett.

C. D. Li, L. Luo, S. F.Wang,W. T. Huang, Q. H. Gong, Y. Y. Yang, and S. J. Feng, �??Two-photon microstructure-polymerization initiated by a coumarin derivative/iodonium salt system,�?? Chem. Phys. Lett. 340, 444�??448 (2001).
[CrossRef]

H. C. Guo, H. B. Jiang, L. Luo, C. Y. Wu, H. C. Guo, X. Wang, Q. H. Gong, F. P. Wu, T. Wang, and M. Q. Shi, �??Two-photon polymerization of gratings by interference of a femtosecond laser pulse,�?? Chem. Phys. Lett. 374, 381�??384 (2003).
[CrossRef]

Laser Phys.

R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, �??Femtosecond two- photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,�?? Laser Phys. 8, 1105�??1108 (1998)

Nature

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y .S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, �??Two-photon polymerization initiators for three-dimensional optical data storage and microfabriction,�?? Nature 398, 51�??54 (1999).
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, �??Finer features for functional micro- devices,�?? Nature 412, 697�??698 (2001).
[CrossRef] [PubMed]

Opt. Lett.

Opt.Lett.

M. Straub and M. Gu, �??Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,�?? Opt.Lett. 27, 1824�??1826 (2002).
[CrossRef]

Science

D. A. Parthenopoulos and P. M. Rentzepis, �??Three-dimensinal optical storage memory,�?? Science 245, 843�??845 (1989).
[CrossRef] [PubMed]

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K.Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, �??An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication,�?? Science 296, 1106�??1109 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Top view of two typical wavy lines in two-photon photopolymerization. The line spacing is 5 μm.

Fig. 2.
Fig. 2.

Schematic of a polymerized ladder-like structure. The focus height can be increased by lowering the sample in the -z direction. (a) Side view showing the cross section of the polymerized lines. The near-infrared femtosecond laser pulses were focused into the SCR 500 resin by a microscope objective under the cover glass substrate. Gray parts, cross section of a polymerized line; orange ellipsoids, focal spots at different heights. (b) Top view showing straight and wavy lines. From left to right, the focus height ascended line by line.

Fig. 3.
Fig. 3.

Straight and wavy lines in two-photon polymerization microfabrication. From lines 1–16, the focus height increased 0.3 μm line by line. The line spacing is 5 μm. The three SEM images on the top show parts of the ladder-like structure after development.

Fig. 4.
Fig. 4.

SEM image of a four-layered structure. The layer spacing is 1 μm, and line spacing in the same layer is 2 μm.

Metrics