Abstract

We present a new interferometric technique for measuring Coherent Anti-Stokes Raman Scattering (CARS) and Second Harmonic Generation (SHG) signals. Heterodyne detection is employed to increase the sensitivity in both CARS and SHG signal detection, which can also be extended to different coherent processes. The exploitation of the mentioned optical nonlinearities for molecular contrast enhancement in Optical Coherence Tomography (OCT) is presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178�??1181 (1991).
    [CrossRef] [PubMed]
  2. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, �??In vivo cellular optical coherence tomography imaging,�?? Nat. Med. 4, 861�??5 (1998).
    [CrossRef] [PubMed]
  3. Y. Wang, Y. Zhao, Z. Chen, R. S. Windeler, and J. Nelson, �??Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,�?? Opt. Lett. 28, 182�??184 (2003).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, �??Optical coherence tomography for ultrahigh resolution in vivo imaging,�?? Nat. Biotechnol. 21, 1361�??1367 (2003).
    [CrossRef] [PubMed]
  5. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, �??Engineered microsphere contrast agents for optical coherence tomography,�?? Opt. Lett. 28, 1546�??1548 (2003).
    [CrossRef] [PubMed]
  6. U. Morgner, W. Drexler, F. Kartner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, �??Spectroscopic optical coherence tomography,�?? Opt. Lett. 25, 111�??13 (2000).
    [CrossRef]
  7. K. Divakar Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??Molecular contrast in optical coherence tomography by use of a pump-probe technique,�?? Opt. Lett. 28, 340�??2 (2003).
    [CrossRef] [PubMed]
  8. J. K. Barton, J. B. Hoying, and C. J. Sullivan, �??Use of microbubbles as an optical coherence tomography contrast agent,�?? Acad. Radiol. 9, S52�??5 (2002).
    [CrossRef] [PubMed]
  9. R. K. Chang, J. Ducuing, and N. Bloembergen, �??Relative phase measurement between fundamental and second-harmonic light,�?? Phys. Rev. Lett. 15, 6�??9 (1965).
    [CrossRef]
  10. R. Stolle, G. Marowsky, E. Schwarzberg, and G. Berkovic �??Phase measurements in nonlinear optics,�?? Appl. Phys. B 63, 491�??8 (1996).
  11. G. Marowsky, and G. Luepke �??CARS-background suppression by phase-controlled nonlinear interferometry,�?? Appl. Phys. B 51, 49�??51 (1990).
    [CrossRef]
  12. J.W. Hahn, and E.S. Lee �??Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,�?? JOSA B 12, 1021�??27 (1995).
    [CrossRef]
  13. A. Zumbusch, G. Holtorn, and X. Sunney Xie, �??Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,�?? Phys. Rev. Lett. 82, 4142�??5 (1999).
    [CrossRef]
  14. W. Dermtroeder, Laser Spectroscopy (Springer, 1998).
  15. J.-X. Cheng, A. Volkmer, and X. Xie, �??Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,�?? J. Opt. Soc. Am. B 19, 1363�??75 (2002).
    [CrossRef]
  16. M. Duncan, J. Reintjes, and T. Manuccia, �??Scanning coherent anti-Stokes Raman microscope,�?? Opt. Lett. 7, 350�??2 (1982).
    [CrossRef] [PubMed]
  17. G. W. Wurpel, J. M. Schins, and M. Muller, �??Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,�?? Opt. Lett. 27, 1093�??1095 (2002).
    [CrossRef]
  18. M. Hashimoto, T. Araki, and S. Kawata, �??Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,�?? Opt. Lett. 25, 1768�??1770 (2000).
    [CrossRef]
  19. J.-X. Cheng, Y. Kevin Jia, G. Zheng, and X. Xie, �??Laser�??scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,�?? Biophys. Journal 83, 502�??9 (2002).
    [CrossRef]
  20. D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging: theory and simulations,�?? In Press, Phys. Rev. Lett.; LANL E�??print arXive <a href="http://www.arxiv.org/abs/physics/0311071 (2003)">http://www.arxiv.org/abs/physics/0311071 (2003)</a>.
  21. D. L. Marks, J. Bredfeldt, S. Hambir, D. Dlott, B. Kitchell, M. Gruebele, and S. A. Boppart, �??Molecular species sensitive optical coherence tomography using coherent anti-Stokes Raman scattering spectroscopy,�?? in Coherence domain optical methods and OCT in biomedicine VII, V.V. Tuchin, J.A. Izatt, and J.G. Fujimoto, eds., Proc. SPIE 4956, 9�??13 (2003).
  22. J. Bredfeldt, D. L. Marks, C. Vinegoni, S. Hambir, and S. A. Boppart, �??Coherent anti-Stokes Raman scattering heterodyne interferometry,�?? Submitted; LANL E�??print arXive <a href="http://www.arxiv.org/abs/physics/0311057 (2003)">http://www.arxiv.org/abs/physics/0311057 (2003)</a>.
  23. P. J. Campagnola and L. M. Loew, �??Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,�?? Nat. Biotechnol. 21, 1356�??1360 (2003).
    [CrossRef] [PubMed]
  24. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, �??Quantitative second-harmonic generation microscopy in collagen,�?? Appl. Optics 42, 5209�??5219 (2003).
    [CrossRef]
  25. I. Freund and M. Deutsch, �??Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in Rat-tail tendon,�?? Biophys. J. 50, 693�??712 (1986).
    [CrossRef] [PubMed]
  26. K. Eisenthal, �??Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy,�?? Chem. Rev. 96, 1343�??60 (1996).
    [CrossRef] [PubMed]
  27. R. Brown, A. Millard, and P. J. Campagnola, �??Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. �?? Opt. Lett. 28, 2207�??2209 (2003).
    [CrossRef] [PubMed]
  28. J. Squier, M. Muller, G. Brakenhoff, and K. Wilson, �??Third harmonic generation microscopy,�?? Opt. Express 3, 315 �??24 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-315">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-9-315</a>.
    [CrossRef] [PubMed]

Acad. Radiol. (1)

J. K. Barton, J. B. Hoying, and C. J. Sullivan, �??Use of microbubbles as an optical coherence tomography contrast agent,�?? Acad. Radiol. 9, S52�??5 (2002).
[CrossRef] [PubMed]

Appl. Optics (1)

P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, �??Quantitative second-harmonic generation microscopy in collagen,�?? Appl. Optics 42, 5209�??5219 (2003).
[CrossRef]

Appl. Phys. (1)

R. Stolle, G. Marowsky, E. Schwarzberg, and G. Berkovic �??Phase measurements in nonlinear optics,�?? Appl. Phys. B 63, 491�??8 (1996).

Appl. Phys. B (1)

G. Marowsky, and G. Luepke �??CARS-background suppression by phase-controlled nonlinear interferometry,�?? Appl. Phys. B 51, 49�??51 (1990).
[CrossRef]

Biophys. J. (1)

I. Freund and M. Deutsch, �??Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in Rat-tail tendon,�?? Biophys. J. 50, 693�??712 (1986).
[CrossRef] [PubMed]

Biophys. Journal (1)

J.-X. Cheng, Y. Kevin Jia, G. Zheng, and X. Xie, �??Laser�??scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,�?? Biophys. Journal 83, 502�??9 (2002).
[CrossRef]

Chem. Rev. (1)

K. Eisenthal, �??Liquid Interfaces Probed by Second-Harmonic and Sum-Frequency Spectroscopy,�?? Chem. Rev. 96, 1343�??60 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

JOSA B (1)

J.W. Hahn, and E.S. Lee �??Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,�?? JOSA B 12, 1021�??27 (1995).
[CrossRef]

LANL E???print arXive (1)

J. Bredfeldt, D. L. Marks, C. Vinegoni, S. Hambir, and S. A. Boppart, �??Coherent anti-Stokes Raman scattering heterodyne interferometry,�?? Submitted; LANL E�??print arXive <a href="http://www.arxiv.org/abs/physics/0311057 (2003)">http://www.arxiv.org/abs/physics/0311057 (2003)</a>.

Nat. Biotechnol. (2)

P. J. Campagnola and L. M. Loew, �??Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,�?? Nat. Biotechnol. 21, 1356�??1360 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, �??Optical coherence tomography for ultrahigh resolution in vivo imaging,�?? Nat. Biotechnol. 21, 1361�??1367 (2003).
[CrossRef] [PubMed]

Nat. Med. (1)

S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, �??In vivo cellular optical coherence tomography imaging,�?? Nat. Med. 4, 861�??5 (1998).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (8)

R. Brown, A. Millard, and P. J. Campagnola, �??Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. �?? Opt. Lett. 28, 2207�??2209 (2003).
[CrossRef] [PubMed]

Y. Wang, Y. Zhao, Z. Chen, R. S. Windeler, and J. Nelson, �??Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,�?? Opt. Lett. 28, 182�??184 (2003).
[CrossRef] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, �??Engineered microsphere contrast agents for optical coherence tomography,�?? Opt. Lett. 28, 1546�??1548 (2003).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. Kartner, X. Li, C. Pitris, E. Ippen, and J. Fujimoto, �??Spectroscopic optical coherence tomography,�?? Opt. Lett. 25, 111�??13 (2000).
[CrossRef]

K. Divakar Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, �??Molecular contrast in optical coherence tomography by use of a pump-probe technique,�?? Opt. Lett. 28, 340�??2 (2003).
[CrossRef] [PubMed]

M. Duncan, J. Reintjes, and T. Manuccia, �??Scanning coherent anti-Stokes Raman microscope,�?? Opt. Lett. 7, 350�??2 (1982).
[CrossRef] [PubMed]

G. W. Wurpel, J. M. Schins, and M. Muller, �??Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,�?? Opt. Lett. 27, 1093�??1095 (2002).
[CrossRef]

M. Hashimoto, T. Araki, and S. Kawata, �??Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration,�?? Opt. Lett. 25, 1768�??1770 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

A. Zumbusch, G. Holtorn, and X. Sunney Xie, �??Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,�?? Phys. Rev. Lett. 82, 4142�??5 (1999).
[CrossRef]

R. K. Chang, J. Ducuing, and N. Bloembergen, �??Relative phase measurement between fundamental and second-harmonic light,�?? Phys. Rev. Lett. 15, 6�??9 (1965).
[CrossRef]

D. L. Marks and S. A. Boppart, �??Nonlinear interferometric vibrational imaging: theory and simulations,�?? In Press, Phys. Rev. Lett.; LANL E�??print arXive <a href="http://www.arxiv.org/abs/physics/0311071 (2003)">http://www.arxiv.org/abs/physics/0311071 (2003)</a>.

Proc. SPIE (1)

D. L. Marks, J. Bredfeldt, S. Hambir, D. Dlott, B. Kitchell, M. Gruebele, and S. A. Boppart, �??Molecular species sensitive optical coherence tomography using coherent anti-Stokes Raman scattering spectroscopy,�?? in Coherence domain optical methods and OCT in biomedicine VII, V.V. Tuchin, J.A. Izatt, and J.G. Fujimoto, eds., Proc. SPIE 4956, 9�??13 (2003).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178�??1181 (1991).
[CrossRef] [PubMed]

Other (1)

W. Dermtroeder, Laser Spectroscopy (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Setup used to generate the Stokes and the Pump excitation fields. DPSS, diode-pumped solid-state laser; Regen, regenerative amplifier; OPA, optical parametric amplifier.

Fig. 2.
Fig. 2.

Setup of the interferometric CARS measurement system. DM, dichroic mirror; BS, beamsplitter; M, mirror; HPF, high-pass-filter; PH, pin-hole; PMT photomultiplier tube; PC, personal computer.

Fig. 3.
Fig. 3.

Interferogram of the pump beam detected at the beamsplitter BS2 of the setup shown in Fig. 2. The envelope of the interferogram was fitted using the modulus of the degree of the coherence function. In the inset is shown a detail of the interference pattern and its fit by the real part of the degree of coherence function (open circles: experimental data; solid line: fit). L c is the coherence length of the pulse. λ PUMP is the wavelength of the Pump signal.

Fig. 4.
Fig. 4.

Log-log plots of the intensity of the CARS signal as a function of (a) the intensity of the Pump field and (b) the intensity of the Stokes field (solid lines, curve fitting). The dotted line in (a) has a slope of 2. “m” is the angular coefficient of the solid lines [22].

Fig. 5.
Fig. 5.

CARS interferogram detected at the beamsplitter BS2 of the setup shown in Fig.2. The envelope of the interferogram was fitted using the modulus of the degree of the coherence function. In the inset is shown a detail of the interference pattern and its fit by the real part of the degree of coherence function (open circles: experimental data; solid line: fit). L c is the coherence length of the pulse. λ AS is the wavelength of the CARS signal.

Fig. 6.
Fig. 6.

Setup of the interferometric SHG measurement system. Two different SHG crystals (Type I) were inserted in the two arms of the interferometers. BS, beamsplitter; M, mirror; IF, interference filter; PH, pin-hole; PMT, photomultiplier tube; PC, personal computer.

Fig. 7.
Fig. 7.

SHG interferogram detected at the beamsplitter BS2 of the setup shown in Fig.6. The interferogram was recorded as the pathlength of the reference arm was scanned. The modulus of the degree of the coherence function was used to fit the envelope of the interferogram. The inset shows a detail of the interference pattern and its fit by the real part of the degree of coherence function (open circles: experimental data; solid line: fit). L c is the coherence length of the pulse. λ SHG is the wavelength of the SHG signal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ¯ = ε 0 ( χ ( 1 ) · E ¯ + χ ( 2 ) : E ¯ E ¯ + χ ( 3 ) E ¯ E ¯ E ¯ + )
γ ( τ ) = exp ( i τ ω 0 i δ ω 2 τ 2 4 )
τ c = + γ ( τ ) 2 d τ

Metrics