Abstract

Thermally stabilized photo-induced channel waveguides with Bragg gratings were fabricated in Ge-B-SiO2 thin glass films by exposure with KrF excimer laser and successive annealing at 600°C. The annealing reversed the photo-induced refractive index pattern and also enhanced its thermal stability. The stabilized channel waveguide with a Bragg grating showed diffraction efficiency of 18.0 dB and 18.7 dB for TE- and TM-like modes, respectively. The diffraction efficiencies and wavelengths for both modes never changed after heat treatment at 500°C, whereas the conventional photo-induced grating decayed even at 200°C.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. O. Hill, P. St. J. Russell, G. Meltz, and A. M. Vengsarkar, �??Fiber Bragg grating technology fundamentals and overview,�?? J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  2. D. Milanese, M. Ferraris, Y. Menke, M. Olivero, G. Perrone, C. B. E. Gawith, G. Brambilla, P. G. R. Smith, and E. R. Taylor, �??Photosensitive properties of a tin-doped sodium silicate glass for direct ultraviolet writing,�?? Appl. Phys. Lett. 84, 3259-3261 (2004).
    [CrossRef]
  3. K. P. Chen, P. R. Herman, R. Taylor, and C. Hnatovsky, �??Vacuum-ultraviolet laser-induced refractive-index change and birefringence in standard optical fibers,�?? J. Lightwave. Technol. 21, 1969-1977 (2003).
    [CrossRef]
  4. A. M. Streltsov, and N. F. Borrelli, �??Study of femtosecond-laser-written waveguides in glasses,�?? J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  5. D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, �??Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon,�?? Opt. Lett. 29, 947-949 (2004).
    [CrossRef] [PubMed]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, �??Decay of ultraviolet-induced fiber Bragg gratings,�?? J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  7. M. Lancry, P. Niay, S. Bailleux, M. Douay, C. Depecker, P. Cordier, and I. Riant, �??Thermal stability of the 248-nm-induced presensitization process in standard H2-loaded germanosilicate fibers,�?? Appl. Opt. 41, 7197-7204 (2002).
    [CrossRef] [PubMed]
  8. S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, �??Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,�?? J. Lightwave Technol. 15, 1470-1477 (1997).
    [CrossRef]
  9. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, �??Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,�?? J. Lightwave. Technol. 15, 1329-1342 (1997).
    [CrossRef]
  10. J. Rathje, M. Kristensen, and J. E. Pedersen, �??Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,�?? J. Appl. Phys. 88, 1050-1055 (2000).
    [CrossRef]
  11. H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, �??Annealing of Bragg gratings in hydrogen-loaded optical fiber,�?? J. Appl. Phys. 78, 2940-2945 (1995).
    [CrossRef]
  12. J. Nishii, K. Kintaka, H. Nishiyama, T. Sano, E. Ohmura, and I. Miyamoto, �??Thermally stabilized photoinduced Bragg gratings,�?? Appl. Phys. Lett. 81, 2364-2366 (2002).
    [CrossRef]
  13. H. Nishiyama, K. Kintaka, J. Nishii, T. Sano, E. Ohmura, and I. Miyamoto, �??Thermo- and Photo-sensitive GeO2-B2O3-SiO2 thin glass films,�?? Jpn. J. Appl. Phys. 42, 559-563 (2003).
    [CrossRef]
  14. H. Nishiyama, I. Miyamoto, S. Matsumoto, M. Saito, K. Fukumi, K. Kintaka, and J. Nishii, �??Periodic precipitation of crystalline Ge nanoparticles in Ge-B-SiO2 thin glass films�??, submitted to Appl. Phys. Lett.
  15. H. Nishiyama, E. Ohmura, I. Miyamoto, K. Kintaka, and J. Nishii, �??Formation of the Bragg gratings attributed to the phase separation of Ge-B-SiO2 thin glass films�??, in Proceedings of Microoptics Conference, Paper L-12, Jena, Germany (2004).
  16. B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, �??Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,�?? IEEE. Photon. Technol. Lett. 12, 1349-1351 (2000).
    [CrossRef]
  17. G. Brambilla, �??Enhanced thermal stability of strong gratings written in H-loaded tin-phosphosilicate optical fibers,�?? Appl. Phys. Lett. 81, 4151-4153 (2002).
    [CrossRef]
  18. Y. Shen, T. Sun, K. T. V. Grattan, and M. Sun, �??Highly photosensitive Sb Er Ge-codoped silica fiber for writing fiber Bragg gratings with strong high-temperature sustainability,�?? Opt. Lett. 28, 2025-2027 (2003).
    [CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Milanese, M. Ferraris, Y. Menke, M. Olivero, G. Perrone, C. B. E. Gawith, G. Brambilla, P. G. R. Smith, and E. R. Taylor, �??Photosensitive properties of a tin-doped sodium silicate glass for direct ultraviolet writing,�?? Appl. Phys. Lett. 84, 3259-3261 (2004).
[CrossRef]

J. Nishii, K. Kintaka, H. Nishiyama, T. Sano, E. Ohmura, and I. Miyamoto, �??Thermally stabilized photoinduced Bragg gratings,�?? Appl. Phys. Lett. 81, 2364-2366 (2002).
[CrossRef]

H. Nishiyama, I. Miyamoto, S. Matsumoto, M. Saito, K. Fukumi, K. Kintaka, and J. Nishii, �??Periodic precipitation of crystalline Ge nanoparticles in Ge-B-SiO2 thin glass films�??, submitted to Appl. Phys. Lett.

G. Brambilla, �??Enhanced thermal stability of strong gratings written in H-loaded tin-phosphosilicate optical fibers,�?? Appl. Phys. Lett. 81, 4151-4153 (2002).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, �??Highly stable fiber Bragg gratings written in hydrogen-loaded fiber,�?? IEEE. Photon. Technol. Lett. 12, 1349-1351 (2000).
[CrossRef]

J. Appl. Phys. (3)

J. Rathje, M. Kristensen, and J. E. Pedersen, �??Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings,�?? J. Appl. Phys. 88, 1050-1055 (2000).
[CrossRef]

H. Patrick, S. L. Gilbert, A. Lidgard, and M. D. Gallagher, �??Annealing of Bragg gratings in hydrogen-loaded optical fiber,�?? J. Appl. Phys. 78, 2940-2945 (1995).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, �??Decay of ultraviolet-induced fiber Bragg gratings,�?? J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

J. Lightwave Technol. (2)

K. O. Hill, P. St. J. Russell, G. Meltz, and A. M. Vengsarkar, �??Fiber Bragg grating technology fundamentals and overview,�?? J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

S. R. Baker, H. N. Rourke, V. Baker, and D. Goodchild, �??Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber,�?? J. Lightwave Technol. 15, 1470-1477 (1997).
[CrossRef]

J. Lightwave. Technol. (2)

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, �??Densification involved in the UV-based photosensitivity of silica glasses and optical fibers,�?? J. Lightwave. Technol. 15, 1329-1342 (1997).
[CrossRef]

K. P. Chen, P. R. Herman, R. Taylor, and C. Hnatovsky, �??Vacuum-ultraviolet laser-induced refractive-index change and birefringence in standard optical fibers,�?? J. Lightwave. Technol. 21, 1969-1977 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

H. Nishiyama, K. Kintaka, J. Nishii, T. Sano, E. Ohmura, and I. Miyamoto, �??Thermo- and Photo-sensitive GeO2-B2O3-SiO2 thin glass films,�?? Jpn. J. Appl. Phys. 42, 559-563 (2003).
[CrossRef]

Microoptics Conference (1)

H. Nishiyama, E. Ohmura, I. Miyamoto, K. Kintaka, and J. Nishii, �??Formation of the Bragg gratings attributed to the phase separation of Ge-B-SiO2 thin glass films�??, in Proceedings of Microoptics Conference, Paper L-12, Jena, Germany (2004).

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Changes in refractive indices at 632.8 nm wavelength of the unirradiated film and the homogeneously irradiated film as a function of an annealing time at 600°C. Irradiation was performed with KrF excimer laser under the condition of the photon density of 180 mJ/cm2/pulse and a shot number of 27 000.

Fig. 2.
Fig. 2.

Schematic fabrication processes of a thermally stabilized channel waveguide with TG by irradiation with KrF excimer laser and thermal annealing. The refractive index distribution in Ge-B-SiO2 thin film at each process is also shown. The refractive index in the unirradiated region became higher than that of the irradiated one after annealing for longer than 10 min, in contrast with the case before annealing.

Fig. 3.
Fig. 3.

Near-field pattern of the output beam from a thermally stabilized channel waveguide when the light of 1550 nm in wavelength was coupled. The height and width of the core were 4 μm and 6 μm, respectively.

Fig. 4.
Fig. 4.

Transmission spectra of a thermally stabilized channel waveguide with TG for TE-and TM-like modes. Diffraction peaks of 18.0 dB and 18.7 dB for TE-like and TM-like modes were observed, which were located at 1532.7 nm and 1533.1 nm, respectively.

Fig. 5.
Fig. 5.

Changes in (a) diffraction efficiencies and (b) diffraction wavelengths for TE-and TM-like modes of a thermally stabilized channel waveguide with TG after heat treatment up to 500°C. For comparison, the experimental results for a channel waveguide with a PG are also plotted. Annealing time was 1 h at each temperature.

Metrics