Abstract

A Sagnac loop interferometer based on polarization-maintaining photonic crystal fiber was built and analyzed. Mainly the temperature dependence of the Sagnac loop filter function was measured and analyzed. By measuring the filtering function of the Sagnac loop as a function of the temperature over 200 °C, we deduced an unambiguous temperature dependent birefringence coefficient, dΔn/dT = -2.0 × 10-9 /K. Over the full temperature swing, the maximum peak shifts was less than 10% of the filter period. For comparison, a standard Sagnac loop was built with the exact same length and experimental condition, where we deduced dΔn/dT = -7.0 × 10-8 /K.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.S. Kim, R.M. Sova, and J.U. Kang: �??Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,�?? Opt. Commun. 218, 291-295 (2003).
    [CrossRef]
  2. Y. Han, Q. Li, X. Liu, and B. Zhou: �??Architecture of high-order all-fiber birefringent filters by the use of the Sagnac interferometer,�?? IEEE Photon. Technol. Lett. 11, 90-92 (1999).
    [CrossRef]
  3. X. Fang and R.O. Claus: �??Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer,�?? Opt. Lett. 20, 2146-2148 (1995).
    [CrossRef] [PubMed]
  4. M. Szpulak, W. Urbanczyk, T. Martynkien, J. Wojcik, and W. J. Bock: �??Temperature sensitivity of photonic crystal holey fibers,�?? in Optical Fibers and Their Applications VIII, J. Dorosz and R.S. Romaniuk, eds., Proc. SPIE 5028, 108-114 (2003).
    [CrossRef]
  5. T. Ritari, T. Niemi, H. Ludvigsen, M. Wegmuller, N. Gisin, J. R. Folkenberg, A. Petterson: �??Polarization-mode dispersion of large mode-area photonic crystal fibers,�?? Opt. Comm. 226, 233�??239 (2003).
    [CrossRef]
  6. M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wójcik, W. J. Bock: �??Influence of temperature on birefringence and polarization mode dispertion in photonic crystal holey fiber,�?? in Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, (Warsaw, Poland, 2002) Vol. 2, pp. 89-92.
  7. A.N. Starodumov, L.A. Zenteno, D. Monzon, and E. De La Rosa: �??Fiber Sagnac interferometer temperature sensor,�?? Appl. Phys. Lett. 70, 19-21 (1997).
    [CrossRef]

4th Int'l Conf Transparent Opt Networks (1)

M. Szpulak, T. Martynkien, W. Urbanczyk, J. Wójcik, W. J. Bock: �??Influence of temperature on birefringence and polarization mode dispertion in photonic crystal holey fiber,�?? in Proceedings of 4th International Conference on Transparent Optical Networks and 1st European Symposium on Photonic Crystals, (Warsaw, Poland, 2002) Vol. 2, pp. 89-92.

Appl. Phys. Lett. (1)

A.N. Starodumov, L.A. Zenteno, D. Monzon, and E. De La Rosa: �??Fiber Sagnac interferometer temperature sensor,�?? Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Han, Q. Li, X. Liu, and B. Zhou: �??Architecture of high-order all-fiber birefringent filters by the use of the Sagnac interferometer,�?? IEEE Photon. Technol. Lett. 11, 90-92 (1999).
[CrossRef]

Opt. Comm. (1)

T. Ritari, T. Niemi, H. Ludvigsen, M. Wegmuller, N. Gisin, J. R. Folkenberg, A. Petterson: �??Polarization-mode dispersion of large mode-area photonic crystal fibers,�?? Opt. Comm. 226, 233�??239 (2003).
[CrossRef]

Opt. Commun. (1)

C.S. Kim, R.M. Sova, and J.U. Kang: �??Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter,�?? Opt. Commun. 218, 291-295 (2003).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

M. Szpulak, W. Urbanczyk, T. Martynkien, J. Wojcik, and W. J. Bock: �??Temperature sensitivity of photonic crystal holey fibers,�?? in Optical Fibers and Their Applications VIII, J. Dorosz and R.S. Romaniuk, eds., Proc. SPIE 5028, 108-114 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of experimental setup.

Fig. 2.
Fig. 2.

Peak shifts of PMF-Sagnac. (Dotted line is for the eye.)

Fig. 3.
Fig. 3.

Peak shifts of PMF-Sagnac measured in scale of 2 °C temperature increments. (Dotted line is for the eye.)

Fig. 4.
Fig. 4.

Peak shifts of PM-PCF-Sagnac. (Dotted line is for the eye.)

Fig. 5.
Fig. 5.

Temperature dependent peak shift for PMF and PM-PCF expressed in units of Δλ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

t = sin 2 ( π Δ n ( T ) L λ )
t = sin 2 ( πL λ ( Δ n ( T 0 ) + d Δ n dT ( T T 0 ) ) )
Δ λ = λ 2 Δ n ( T 0 ) L
πL λ ( d Δ n dT ( T T 0 ) ) = π
dT = Δ λ λ L d Δ n dT

Metrics