Abstract

Sol-gel hybrid materials containing a large quantity of photoactive molecules exhibited large changes in both refractive index and volume by UV exposure. The materials were used for the fabrication of diffraction gratings using the two-beam interference method. With this technique, we could simply fabricate the diffraction gratings and easily control the grating periods. The diffraction effects and efficiencies of gratings rely heavily on the UV doses and the fabricated diffraction gratings showed a good diffraction performance.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. V. Weiss, A. A. Friesem and V. A. Krongauz, �??Holographic recording and all-optical modulation in photochromic polymers,�?? Opt. Lett. 18, 1089-1091 (1993).
    [CrossRef] [PubMed]
  2. T. Huang and K. H. Wagner, �??Photoanisotropic incoherent-to-coherent optical conversion,�?? Appl. Opt 32, 1888-1900(1993).
    [CrossRef] [PubMed]
  3. Yariv, A and M. Nakamura, �??Periodic structures for integrated optics,�?? IEEE J. Quantum Electron. QE- 13, 233-253 (1977).
    [CrossRef]
  4. J. T. Rantala, R. S. Penner, S. Honkanen, J. Vähäkangas, M. Fallahi, and N. Peyghambarian, �??Negative tone hybrid sol-gel materials for electron-beam lithography,�?? Thin Solid Films 345, 185-187 (1999).
    [CrossRef]
  5. P. �?yräs, J. T. Rantala, S. Honkanen, S. B. Memdes, and N. Peyghambarian, �??Diffraction gratings in solgel films by direct contact printing using a UV-mercury lamp,�?? Opt. Commun. 162, 215-218 (1999).
    [CrossRef]
  6. H. J. Jiang, X.-C. Yuan, Y. Zhou, Y. C. Chan, and Y. L. Lam, �??Single-step fabrication of diffraction gratings on hybrid sol-gel glass using holographic interference lithography,�?? Opt. Commun. 185, 19-24 (2000)
    [CrossRef]
  7. N. Zettsu, T. Ubukata, T.Seki, and K. Ichimura, �??Soft Crosslinkable Azo Polymer for Rapid Surface Relief Formation and Persistent Fixation,�?? Adv. Mater. 13, 1693-1697 (2001).
    [CrossRef]
  8. N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar and S. K. Tripathy, �??Surface relief structures on azo polymer films,�?? J. Mater. Chem. 9, 1941-1955 (1999).
    [CrossRef]
  9. X.-C. Yuan, W. X. Yu, N. Q. Ngo, and W. C. Cheong, �??Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask,�?? Opt. Express 10, 303-308 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-303">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-303</a>
    [CrossRef] [PubMed]
  10. W. X. Yu, X.-C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and K.V. Koudriachov, �??Single step fabrication of continuous micro-optical elements in hybrid sol-gel glass by laser direct writing,�?? Opt..Express 10, 443-448 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-443">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-443</a>
    [CrossRef] [PubMed]
  11. D. J. Kang, J. U. Park, B. S. Bae, J. Nishii and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1144">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1144
    [CrossRef] [PubMed]
  12. W. Yu and X. -. Yuan, "Variable surface profile gratings in sol-gel glass fabricated by holographic interference," Opt. Express 11, 1925-1930 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1925">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1925</a>
    [CrossRef] [PubMed]
  13. O. H. Park, S. J. Kim and B. S. Bae, "Photochemical Reactions in Fluorinated Sol-Gel Hybrid Materials Doped with a Photolocking Agent for Direct Micropatterning," J. Mater. Chem. 14, 1749-1753 (2004).
    [CrossRef]
  14. O. H. Park, J. I. Jung, and B. S. Bae, "Photoinduced Condensation of Sol-Gel Hybrid Glass Films Doped with Benzildimethylketal,�?? J. Mater. Res. 16, 2143-2148 (2001).
    [CrossRef]
  15. B. S. Bae, O. H Park, R Charters, B Luther-Davies, and G. R. Atkins, �??Direct laser writing of selfdeveloped waveguides in benzyl dimethyl ketal doped sol-gel hybrid glass,�?? J. Mater. Res. 16, 3184-3187 (2001
    [CrossRef]
  16. A. H. O. Kärkkäinen, J. M. Tamkin, J. D. Rogers, D. R. Neal, O. E. Hormi, G. E. Jabbour, J. T. Rantala, and M. R. Descour, �??Direct photolithographic deforming of organomodified siloxane films for microoptics fabrication,�?? Appl. Opt. 41, 3988 (2002).
    [CrossRef] [PubMed]

Adv. Mater.

N. Zettsu, T. Ubukata, T.Seki, and K. Ichimura, �??Soft Crosslinkable Azo Polymer for Rapid Surface Relief Formation and Persistent Fixation,�?? Adv. Mater. 13, 1693-1697 (2001).
[CrossRef]

Appl. Opt

T. Huang and K. H. Wagner, �??Photoanisotropic incoherent-to-coherent optical conversion,�?? Appl. Opt 32, 1888-1900(1993).
[CrossRef] [PubMed]

Appl. Opt.

IEEE J. Quantum Electron.

Yariv, A and M. Nakamura, �??Periodic structures for integrated optics,�?? IEEE J. Quantum Electron. QE- 13, 233-253 (1977).
[CrossRef]

J. Mater. Chem.

N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar and S. K. Tripathy, �??Surface relief structures on azo polymer films,�?? J. Mater. Chem. 9, 1941-1955 (1999).
[CrossRef]

O. H. Park, S. J. Kim and B. S. Bae, "Photochemical Reactions in Fluorinated Sol-Gel Hybrid Materials Doped with a Photolocking Agent for Direct Micropatterning," J. Mater. Chem. 14, 1749-1753 (2004).
[CrossRef]

J. Mater. Res.

O. H. Park, J. I. Jung, and B. S. Bae, "Photoinduced Condensation of Sol-Gel Hybrid Glass Films Doped with Benzildimethylketal,�?? J. Mater. Res. 16, 2143-2148 (2001).
[CrossRef]

B. S. Bae, O. H Park, R Charters, B Luther-Davies, and G. R. Atkins, �??Direct laser writing of selfdeveloped waveguides in benzyl dimethyl ketal doped sol-gel hybrid glass,�?? J. Mater. Res. 16, 3184-3187 (2001
[CrossRef]

Opt. Commun.

P. �?yräs, J. T. Rantala, S. Honkanen, S. B. Memdes, and N. Peyghambarian, �??Diffraction gratings in solgel films by direct contact printing using a UV-mercury lamp,�?? Opt. Commun. 162, 215-218 (1999).
[CrossRef]

H. J. Jiang, X.-C. Yuan, Y. Zhou, Y. C. Chan, and Y. L. Lam, �??Single-step fabrication of diffraction gratings on hybrid sol-gel glass using holographic interference lithography,�?? Opt. Commun. 185, 19-24 (2000)
[CrossRef]

Opt. Express

Opt. Lett.

Opt..Express

W. X. Yu, X.-C. Yuan, N. Q. Ngo, W. X. Que, W. C. Cheong, and K.V. Koudriachov, �??Single step fabrication of continuous micro-optical elements in hybrid sol-gel glass by laser direct writing,�?? Opt..Express 10, 443-448 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-443">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-443</a>
[CrossRef] [PubMed]

Thin Solid Films

J. T. Rantala, R. S. Penner, S. Honkanen, J. Vähäkangas, M. Fallahi, and N. Peyghambarian, �??Negative tone hybrid sol-gel materials for electron-beam lithography,�?? Thin Solid Films 345, 185-187 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Refractive index changes (a) and thickness changes (b) in UV exposed and baked SGH film depending on UV doses.

Fig. 2.
Fig. 2.

Illustration of two-beam interference system (a) and the schematic illustration of the interference beam illuminated by the two-beam system (b).

Fig. 3.
Fig. 3.

Optical micrographs of diffraction gratings with periods of 5 µm (a), 3 µm (b), and 1 µm (c) fabricated with the two-beam interference system (photo-fabrication: before baking, optical micrographs investigation: after baking).

Fig. 4.
Fig. 4.

AFM images of diffraction gratings with periods of 600 nm (a) and 500 nm (b) fabricated with the two-beam interference system (photo-fabrication: before baking, AFM investigation: after baking).

Fig. 5.
Fig. 5.

CCD images of diffraction effects of the gratings with the period of 5 µm depending on exposure time (Diffraction effects in-situ measurement: before baking).

Fig. 6.
Fig. 6.

Diffraction efficiencies of gratings with the period of 0.7 µm depending on exposure time (Diffraction efficiencies measurement: after baking).

Metrics