Abstract

We present an entangled-state quantum cryptography system that operated for the first time in a real-world application scenario. The full key generation protocol was performed in real-time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, ???Quantum Cryptography,??? Rev. Mod. Phys. 74, 145???195 (2002).
    [CrossRef]
  2. idQuantique SA (Geneve, Switzerland), <a href="http://www.idquantique.com/.">http://www.idquantique.com/</a>
  3. magiq technologies (Sommerville, USA), <a href="http://www.magiqtech.com/.">http://www.magiqtech.com/</a>
  4. NEC Ltd.(Tokyo, Japan), <a href="http://www.nec.com/.">http://www.nec.com/</a>
  5. J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, and C. J. Williams, ???Quantum key distribution with 1.25 Gbps clock synchronization,??? Opt. Express 12, 2011???2017 (2004).
    [CrossRef] [PubMed]
  6. C. Bennett and G. Brassard, ???Quantum Cryptography: public key distribution and coin tossing,??? in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing(Bangalore, India, 1984), pp. 175???179.
    [PubMed]
  7. N. Lütkenhaus, ???Estimates for practical quantum cryptography,??? Phys. Rev. A 59, 3301???3319 (1999).
    [CrossRef]
  8. H. Inamori, N. Lütkenhaus, and D. Mayers, ???Unconditional security of practical quantum key distribution,??? quant-ph/0107017 (2001).
  9. A. K. Ekert, ???Quantum cryptography based on Bell???s theorem,??? Phys. Rev. Lett. 67, 661???663 (1991).
    [CrossRef] [PubMed]
  10. N. Lütkenhaus, ???Security against individual attacks for realistic quantum key distribution,??? Phys. Rev. A 61, 052304 (2000).
    [CrossRef]
  11. G. S. Vernam, ???Cipher printing telegraph systems for secret wire and radio,??? J. Amer. Inst. Elect. Eng. 55, 109???115 (1926).
  12. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, ???Quantum cryptography with entangled photons,??? Phys. Rev. Lett. 84, 4729???4732 (2000).
    [CrossRef] [PubMed]
  13. D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, ???Entangled state quantum cryptography: eavesdropping on the Ekert protocol,??? Phys. Rev. Lett. 84, 4733???4736 (2000).
    [CrossRef] [PubMed]
  14. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, ???Quantum cryptography using entangled photons in energy-time Bell states,??? Phys. Rev. Lett. 84, 4737???4740 (2000).
    [CrossRef] [PubMed]
  15. H. Böhm, ???A compact source for polarization entangled photon pairs,??? Master???s thesis, Vienna University of Technology (2003).
  16. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, ???Long-distance free-space distribution of quantum entanglement,??? Science 301, 621???623 (2003).
    [CrossRef] [PubMed]
  17. P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, and C. Kurtsiefer, ???Compact source of polarization-entangled photon,??? Opt. Express 12, 276???281 (2004).
    [CrossRef] [PubMed]
  18. S. Wiesner, ???Conjugate Coding,??? submitted to IEEE Information Theory (ca. 1970) Later published in Sigact News 15(1), 78???88 (1983).
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, ???New high-intensity source of polarization-entangled photon pairs,??? Phys. Rev. Lett. 75, 4337???4341 (1995).
    [CrossRef] [PubMed]
  20. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, ???High-efficiency entangled photon pair collection in type-II parametric fluorescence,??? Phys. Rev. A 64, 023802 (2001).
    [CrossRef]
  21. R. Lieger, T. Lorünser, G. Humer, and F. Schupfer, ???Embedding quantum cryptography on DSP-boards,??? in Proceedings of EUSIPCO - to be published (Vienna, Austria, 2004).
  22. G. Brassard and L. Salvail, ???Secret key reconciliation by public discussion,??? Lecture Notes in Computer Science 765, 410???423 (1994).
    [CrossRef]
  23. M. Peev, O. Maurhardt, T. Lorünser, M. Suda, M. Nölle, A. Poppe, R. Ursin, A. Fedrizzi, H. Böhm, T. Jennewein, and A. Zeilinger, ???A novel protocol-authentication algorithm ruling out a man-in-the middle attack in quantum cryptography,??? in Proceedings of the International Meeting on Quantum Information Science ???Foundations of Quantum Information??? - to be published (Camerino, Italy, 2004).

Foundations of Quantum Information (1)

M. Peev, O. Maurhardt, T. Lorünser, M. Suda, M. Nölle, A. Poppe, R. Ursin, A. Fedrizzi, H. Böhm, T. Jennewein, and A. Zeilinger, ???A novel protocol-authentication algorithm ruling out a man-in-the middle attack in quantum cryptography,??? in Proceedings of the International Meeting on Quantum Information Science ???Foundations of Quantum Information??? - to be published (Camerino, Italy, 2004).

IEEE International Conference (1)

C. Bennett and G. Brassard, ???Quantum Cryptography: public key distribution and coin tossing,??? in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing(Bangalore, India, 1984), pp. 175???179.
[PubMed]

J. Amer. Inst. Elect. Eng. (1)

G. S. Vernam, ???Cipher printing telegraph systems for secret wire and radio,??? J. Amer. Inst. Elect. Eng. 55, 109???115 (1926).

Lecture Notes in Computer Science (1)

G. Brassard and L. Salvail, ???Secret key reconciliation by public discussion,??? Lecture Notes in Computer Science 765, 410???423 (1994).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (3)

N. Lütkenhaus, ???Estimates for practical quantum cryptography,??? Phys. Rev. A 59, 3301???3319 (1999).
[CrossRef]

N. Lütkenhaus, ???Security against individual attacks for realistic quantum key distribution,??? Phys. Rev. A 61, 052304 (2000).
[CrossRef]

C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, ???High-efficiency entangled photon pair collection in type-II parametric fluorescence,??? Phys. Rev. A 64, 023802 (2001).
[CrossRef]

Phys. Rev. Lett. (5)

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, ???New high-intensity source of polarization-entangled photon pairs,??? Phys. Rev. Lett. 75, 4337???4341 (1995).
[CrossRef] [PubMed]

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, ???Quantum cryptography with entangled photons,??? Phys. Rev. Lett. 84, 4729???4732 (2000).
[CrossRef] [PubMed]

D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund, and P. G. Kwiat, ???Entangled state quantum cryptography: eavesdropping on the Ekert protocol,??? Phys. Rev. Lett. 84, 4733???4736 (2000).
[CrossRef] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, ???Quantum cryptography using entangled photons in energy-time Bell states,??? Phys. Rev. Lett. 84, 4737???4740 (2000).
[CrossRef] [PubMed]

A. K. Ekert, ???Quantum cryptography based on Bell???s theorem,??? Phys. Rev. Lett. 67, 661???663 (1991).
[CrossRef] [PubMed]

Proceedings of EUSIPCO (1)

R. Lieger, T. Lorünser, G. Humer, and F. Schupfer, ???Embedding quantum cryptography on DSP-boards,??? in Proceedings of EUSIPCO - to be published (Vienna, Austria, 2004).

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, ???Quantum Cryptography,??? Rev. Mod. Phys. 74, 145???195 (2002).
[CrossRef]

Science (1)

M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, ???Long-distance free-space distribution of quantum entanglement,??? Science 301, 621???623 (2003).
[CrossRef] [PubMed]

Sigact News (1)

S. Wiesner, ???Conjugate Coding,??? submitted to IEEE Information Theory (ca. 1970) Later published in Sigact News 15(1), 78???88 (1983).

Other (5)

H. Böhm, ???A compact source for polarization entangled photon pairs,??? Master???s thesis, Vienna University of Technology (2003).

idQuantique SA (Geneve, Switzerland), <a href="http://www.idquantique.com/.">http://www.idquantique.com/</a>

magiq technologies (Sommerville, USA), <a href="http://www.magiqtech.com/.">http://www.magiqtech.com/</a>

NEC Ltd.(Tokyo, Japan), <a href="http://www.nec.com/.">http://www.nec.com/</a>

H. Inamori, N. Lütkenhaus, and D. Mayers, ???Unconditional security of practical quantum key distribution,??? quant-ph/0107017 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

A quantum cryptography system is installed between the headquarters of a large bank (Alice) and the Vienna City Hall (Bob). The beeline distance between the two buildings is about 650m. The optical fibers were installed some weeks before the experiment in the Vienna sewage system and have a total length of 1.45 km.

Fig. 2.
Fig. 2.

Sketch of the experimental setup. At the entangled state source a nonlinear BBO-crystal is pumped by a violet laser diode (LD) at 405nm and produces polarization-entangled photon pairs. Walk-off effects are compensated by the half-wave-plate (HWP) and the compensation crystals (BBO/2). One of the photons is locally analyzed in Alice’s detection module, while the other is sent over a 1.45 km long single-mode optical fiber (SMF) to the remote site (Bob). Polarization measurement is done in one of two bases (0° and 45°), by using a beam splitter (BS) which randomly sends incident photons to one of two polarizing beam splitters (PBS). One of the PBS is defined for measurement in the 0° basis, and the other in the 45° basis as the half wave plate (HWP) rotates the polarization by 45°. The final detection of the photons is done by passively quenched silicon avalanche photodiodes (APD). Once a photon is detected at one of Alice’s four avalanche photodiodes an optical trigger pulse is created (Sync. Laser) and sent over a standard telecommunication fiber to Bob to establish a common time basis. At both sites, the trigger pulses and the detection events from the APDs are fed into a dedicated quantum key generation device (QKD Electronics) for further processing. This QKD electronic is an embedded system, which is capable of autonomously running the classical protocol necessary for key generation via a standard TCP/IP connection.

Fig. 3.
Fig. 3.

Results obtained during 18 minutes of the running experiment. That time was used to acquire 100 blocks of raw data that each consist of approximately 2500 bits after sifting. The blocks in this graph have been sorted by the estimated QBER and are not represented in the order of their acquisition. Each key block was further processed by the full quantum cryptography software. (a) Estimated QBER for the individual blocks and the real QBER determined by directly comparing the sifted key of each data block. This calculation was only done for evaluation of the system and is obviously not possible for a real key exchange. Additionally one can see the time it took to acquire the raw data of the given block. (b) The length of the final key, the number of bits disclosed by CASCADE and the number of bits discarded in privacy amplification. (c) The final secure bit rate produced by our system.

Metrics