Abstract

We measure stimulated Raman gain at 1550 nm in an ultrasmall SOI strip waveguide, cross-section of 0.098 µm2. We obtain signal amplification of up to 0.7 dB in the counter-propagating configuration for a sample length of 4.2 mm and using a diode pump at 1435 nm with powers of <30 mW. The Raman amplifier has a figure-of-merit (FOM) of 57.47 dB/cm/W. This work shows the feasibility of ultrasmall SOI waveguides for the development of SOI-based on-chip optical amplifiers and active photonic integrated circuits.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Observation of stimulated Raman amplification in silicon waveguides

R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali
Opt. Express 11(15) 1731-1739 (2003)

Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering

Richard Jones, Haisheng Rong, Ansheng Liu, Alexander W. Fang, Mario J. Paniccia, Dani Hak, and Oded Cohen
Opt. Express 13(2) 519-525 (2005)

C-band wavelength conversion in silicon photonic wire waveguides

Richard L. Espinola, Jerry I. Dadap, Richard M. Osgood, Sharee J. McNab, and Yurii A. Vlasov
Opt. Express 13(11) 4341-4349 (2005)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).
  2. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1622
    [Crossref] [PubMed]
  3. R. L. Espinola, M. -C Tsai, J. T. Yardley, and R. M. Osgood, , “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Phot. Tech. Lett. 15, 1366–1368 (2003).
    [Crossref]
  4. M. W. Geis, S. J. Spector, and T. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Phot. Tech. Lett. (to be published).
  5. S. Coffa, G. Franzo, and F. Priolo, “Light emission from Er-doped Si: materials properties, mechanisms, and device performance,” MRS Bulletin,  23, 25–32 (1998)
  6. R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
    [Crossref] [PubMed]
  7. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1731
    [Crossref] [PubMed]
  8. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Anti-Stokes Raman conversion in silicon waveguides,” Opt. Express 11, 2862–2872 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2862
    [Crossref] [PubMed]
  9. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2927
    [Crossref] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001) ISBN 0-12-045143-3.
  11. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 68, 2489–2494 (1972).
    [Crossref]
  12. T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [Crossref]
  13. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in Silicon waveguides,” Opt. Express 12, 2774–2780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774
    [Crossref] [PubMed]

2004 (3)

2003 (4)

2002 (2)

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

R. Claps, D. Dimitropoulos, Y. Han, and B. Jalali, “Observation of Raman emission in silicon waveguides at 1.54 µm,” Opt. Express 10, 1305–1313 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1305
[Crossref] [PubMed]

1998 (1)

S. Coffa, G. Franzo, and F. Priolo, “Light emission from Er-doped Si: materials properties, mechanisms, and device performance,” MRS Bulletin,  23, 25–32 (1998)

1972 (1)

R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 68, 2489–2494 (1972).
[Crossref]

Agarwal, A. M.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001) ISBN 0-12-045143-3.

Claps, R.

Coffa, S.

S. Coffa, G. Franzo, and F. Priolo, “Light emission from Er-doped Si: materials properties, mechanisms, and device performance,” MRS Bulletin,  23, 25–32 (1998)

Dimitropoulos, D.

Espinola, R. L.

R. L. Espinola, M. -C Tsai, J. T. Yardley, and R. M. Osgood, , “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Phot. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Foresi, J. S.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

Franzo, G.

S. Coffa, G. Franzo, and F. Priolo, “Light emission from Er-doped Si: materials properties, mechanisms, and device performance,” MRS Bulletin,  23, 25–32 (1998)

Geis, M. W.

M. W. Geis, S. J. Spector, and T. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Phot. Tech. Lett. (to be published).

Han, Y.

Jalali, B.

Kimerling, L. C.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

Liang, T. K.

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

Liao, L.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

Lim, D. R.

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

Lyszczarz, T.

M. W. Geis, S. J. Spector, and T. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Phot. Tech. Lett. (to be published).

McNab, S. J.

Moll, N.

Osgood, R. M.

R. L. Espinola, M. -C Tsai, J. T. Yardley, and R. M. Osgood, , “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Phot. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Priolo, F.

S. Coffa, G. Franzo, and F. Priolo, “Light emission from Er-doped Si: materials properties, mechanisms, and device performance,” MRS Bulletin,  23, 25–32 (1998)

Raghunathan, V.

Smith, R. G.

R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 68, 2489–2494 (1972).
[Crossref]

Spector, S. J.

M. W. Geis, S. J. Spector, and T. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Phot. Tech. Lett. (to be published).

Tsai, M. -C

R. L. Espinola, M. -C Tsai, J. T. Yardley, and R. M. Osgood, , “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Phot. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Tsang, H. K.

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

Vlasov, Y. A.

Yardley, J. T.

R. L. Espinola, M. -C Tsai, J. T. Yardley, and R. M. Osgood, , “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Phot. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

Appl. Opt. (1)

R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 68, 2489–2494 (1972).
[Crossref]

Appl. Phys. Lett. (1)

T. K. Liang and H. K. Tsang, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[Crossref]

IEEE Phot. Tech. Lett. (1)

R. L. Espinola, M. -C Tsai, J. T. Yardley, and R. M. Osgood, , “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Phot. Tech. Lett. 15, 1366–1368 (2003).
[Crossref]

MRS Bulletin (1)

S. Coffa, G. Franzo, and F. Priolo, “Light emission from Er-doped Si: materials properties, mechanisms, and device performance,” MRS Bulletin,  23, 25–32 (1998)

Opt. Express (6)

Proc. SPIE (1)

J. S. Foresi, D. R. Lim, L. Liao, A. M. Agarwal, and L. C. Kimerling, “Small radius bends and large angle splitters in SOI waveguides,” Proc. SPIE 3007, 112–118 (2002).

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001) ISBN 0-12-045143-3.

M. W. Geis, S. J. Spector, and T. Lyszczarz, “Submicrosecond, submilliwatt, silicon-on-insulator thermooptic switch,” IEEE Phot. Tech. Lett. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical and SEM micrographs of fabricated SOI devices. (a)Waveguides of varying lengths. (b) Zoom of polymer taper spot-size converter. (c) SEM of polymer with inverted silicon taper tip

Fig. 2.
Fig. 2.

Experimental setup for measuring stimulated Raman gain in SOI waveguides.

Fig. 3.
Fig. 3.

Stimulated (a) and spontaneous (b) Raman emission spectra with high-bandwidth OSA detection for SOI waveguides.

Fig. 4.
Fig. 4.

On-Off gain versus input pump power. The maximum gain is 0.7 dB (17%) with a pump power of ~29 mW. A linear fit with a slope of 0.029 dB/mW corresponds to an SRS coefficient, gR~29 cm/GW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d P P ( z ) dz = ν p ν R g R P P ( z ) P R ( z ) α P P ( z ) ( β A eff ) P P ( z ) 2
d P R ( z ) dz = α P R ( z ) ( g R β A eff ) P R ( z ) P P ( z )

Metrics