Abstract

We demonstrate an optical amplifier based on an erbium doped holey fiber (EDHF) with a small core. Owing to the high NA, which is readily achievable using holey fiber technology, and the tight physical confinement of the erbium ions, we show that it is possible to achieve an internal gain efficiency of >8.5dB/mW using an aluminosilicate based glass within the core. The dependence of the gain and noise figure performance with respect to fiber length and wavelength are experimentally characterized.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R.J. Mear, L. Reekie, I.M. Jauncey, D.N. Payne, �??Low noise erbium doped fiber amplifier operating at 1.54mm,�?? Electron. Lett. 23, 1026-1028 (1987)
    [CrossRef]
  2. R.I. Laming, M.N. Zervas, and D.N. Payne, �??Erbium-doped fiber amplifier with 54dB gain and 3.1dB noise-figure,�?? IEEE Photon.Tech.Lett. 4, 1345-1347 (1992)
    [CrossRef]
  3. P.B. Hansen, L. Eskildsen, �??Remote amplification in repeaterless transmission systems,�?? Opt. Fiber Technol. 3, 221-237 (1997).
    [CrossRef]
  4. D.J.F. Cooper and P.W.E. Smith, �??Simple and highly sensitive method for wavelength measurement of low power time-multiplexed signals using optical amplifier,�?? J. Lightwave. Technol. 21, 1612-1620 (2003)
    [CrossRef]
  5. M. Shimizu, M. Yamada, M. Horiguchi, T. Takeshita, and M. Okayasu, �??Erbium-doped amplifiers with an extremely high gain coefficient of 11.0dB/mW,�?? Electron. Lett. 26, 1641-1643 (1990)
    [CrossRef]
  6. M.N. Zervas, R.I. Laming, J.E. Townsend, and D.N. Payne, �??Design and Fabrication of high gain-efficiency erbium-doped fiber amplifiers,�?? IEEE Photon. Technol. Lett. 4, 1342-1344 (1992)
    [CrossRef]
  7. W.L. Barnes, R.I. Laming, E.J. Tarbox, and P.R. Morkel, �??Absorption and emission cross section of Er3+ doped silica fibers,�?? IEEE J. Quantum. Electron. QE-27, 1004-1010 (1991)
    [CrossRef]
  8. J.E. Townsend, �??The development of optical fibers doped with rare-earth ions,�?? Ph.D. Thesis, University of Southampton (1990)
  9. T. Kogure, K. Furusawa, J.H. Lee, T.M. Monro, and D.J. Richardson, �??An erbium doped holey fiber amplifier and a ring laser,�?? European Conference on Optical communications, PD1 (2003).

Electron. Lett.

R.J. Mear, L. Reekie, I.M. Jauncey, D.N. Payne, �??Low noise erbium doped fiber amplifier operating at 1.54mm,�?? Electron. Lett. 23, 1026-1028 (1987)
[CrossRef]

M. Shimizu, M. Yamada, M. Horiguchi, T. Takeshita, and M. Okayasu, �??Erbium-doped amplifiers with an extremely high gain coefficient of 11.0dB/mW,�?? Electron. Lett. 26, 1641-1643 (1990)
[CrossRef]

IEEE J. Quantum. Electron.

W.L. Barnes, R.I. Laming, E.J. Tarbox, and P.R. Morkel, �??Absorption and emission cross section of Er3+ doped silica fibers,�?? IEEE J. Quantum. Electron. QE-27, 1004-1010 (1991)
[CrossRef]

IEEE Photon. Technol. Lett.

M.N. Zervas, R.I. Laming, J.E. Townsend, and D.N. Payne, �??Design and Fabrication of high gain-efficiency erbium-doped fiber amplifiers,�?? IEEE Photon. Technol. Lett. 4, 1342-1344 (1992)
[CrossRef]

IEEE Photon.Tech.Lett.

R.I. Laming, M.N. Zervas, and D.N. Payne, �??Erbium-doped fiber amplifier with 54dB gain and 3.1dB noise-figure,�?? IEEE Photon.Tech.Lett. 4, 1345-1347 (1992)
[CrossRef]

J. Lightwave. Technol.

D.J.F. Cooper and P.W.E. Smith, �??Simple and highly sensitive method for wavelength measurement of low power time-multiplexed signals using optical amplifier,�?? J. Lightwave. Technol. 21, 1612-1620 (2003)
[CrossRef]

Opt. Fiber Technol.

P.B. Hansen, L. Eskildsen, �??Remote amplification in repeaterless transmission systems,�?? Opt. Fiber Technol. 3, 221-237 (1997).
[CrossRef]

Other

J.E. Townsend, �??The development of optical fibers doped with rare-earth ions,�?? Ph.D. Thesis, University of Southampton (1990)

T. Kogure, K. Furusawa, J.H. Lee, T.M. Monro, and D.J. Richardson, �??An erbium doped holey fiber amplifier and a ring laser,�?? European Conference on Optical communications, PD1 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) SEM photograph of the EDHF, (b) absorption spectra of the EDHF and the EDF.

Fig. 2.
Fig. 2.

Schematic of the experimental setup for the amplifier experiment.

Fig. 3.
Fig. 3.

Gain efficiency curves at 1533nm (left) and at 1557nm (right) for different fiber lengths

Fig. 4.
Fig. 4.

Gain saturation curve (a) and noise figure as a function of input power (b) for different fiber lengths.

Fig. 5.
Fig. 5.

Gain profiles for different pump powers for a 4.5m length of EDHFA.

Tables (1)

Tables Icon

Table. 1 Gain efficiencies for different fiber lengths and signal wavelengths.

Metrics