Abstract

We studied experimentally and theoretically the pulse compression using a zero-dispersion photonic crystal fiber in order to optimize the pulse duration and pulse shape. 20.3-fs pulses centered at 1070 nm have been produced using a diode-pumped system based on Yb:SYS crystal. The limitations such as pre-pulse amplitude or solitonic fission have also been studied.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Innerhofer, T. Sudmeyer, F. Brunner, R. Hring, A. Aschwanden, R. Paschotta, C. Honninger, M. Kumkar, U. Keller, �??60-W average power in 810-fs pulses from a thin-disk YbYAG laser,�?? Opt. Lett. 28 367 (2003).
    [CrossRef] [PubMed]
  2. M.E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, �??Ultrafast pulse sources based on multi-mode optical fibers,�?? Appl. Phys. B 65, 259-275 (1997).
    [CrossRef]
  3. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, �??Ultrafast ytterbium-doped bulk laser amplifiers,�?? Appl. Phys B 69, 3-17 (1999).
    [CrossRef]
  4. F. Druon, F. Balembois, P. Georges, �??Laser crystals for the production of ultra-short laser pulses,�?? Ann. Chim. �?? Sci. Mat. (Ed. Elsevier SAS) 28, 47-72 (2003).
    [CrossRef]
  5. C. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevstev, T.A. Birks, J.C. Knight, P.St.J. Russel, �??Experimental measurement of group velocity dispersion in photonic crystal fiber,�?? Electon. Lett. 35, 63-64 (1999).
    [CrossRef]
  6. B.R. Washburn, S.E. Ralph, P.A. Lacourt, J.M. Dudley, W.T. Rhodes, R.S. Windeler, S. Coen, �??Tunable near-infrared femtosecond soliton generation in photonic crystal fibres,�?? Electron. Lett. 37, 1510-1512 (2001).
    [CrossRef]
  7. I.G. Cormack, D.T. Reid, W.J. Wadsworth, J.C. Knight, P.ST.J. Russel, �??Observation of soliton self-frequency shift in photonic crystal fibre,�?? Electron. Lett. 38, 167-168 (2002).
    [CrossRef]
  8. F. Druon, N. Sanner,G. Lucas-Leclin, P. Georges, K.P. Hansen, A. Peterson, �??Self-Compression and Raman Soliton Generation in a Photonic Crystal Fiber of 100-fs Pulses Produced by a Diode-Pumped Yb-Doped Oscillator,�?? Appl. Opt. 42, 6768 (2003).
    [CrossRef] [PubMed]
  9. J.H.V. Price, K. Furasawa, T.M. Monro, L. Lefort, D.J. Richardson, �??Tunable, femtosecond pulse source operating in the range 1.06 1.33 µm based on an Yb3+-doped holey fiber amplifier,�?? J. Opt. Soc. Am. B 19, 1286-94 (2002).
    [CrossRef]
  10. T. Sudmeyer, F. Brunner, E. Innerhofer, R. Paschotta, U. Keller, K. Furusawa, J. Bagget, T. Monro, D. Richardson, �??Nonlinear femtosecond pulse compression at high average power levels by use of a largemode-area holey fiber,�?? Opt. Lett. 28 1951-1953 (2003).
    [CrossRef] [PubMed]
  11. G. McConnell, E. Riis, �??Ultrashort pulse compression using photonic crystal fiber,�?? Appl. Phys. B 557-563 (2004)
    [CrossRef]
  12. F. Druon, S. Chénais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, P.H. Haumesser, B. Viana, D. Vivien, S. Dhellemmes, V. Ortiz, C. Larat, �??Apatite-structure crystal, Yb3+:SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers,�?? Opt. Lett. 27 1914-1916 (2002).
    [CrossRef]
  13. <a href="http://www.crystal-fibre.com/">http://www.crystal-fibre.com/</a>
  14. R. L. Fork , O. E. Martinez , and J. P. Gordon, �??Negative dispersion using pairs of prisms,�?? Opt. Lett. 9, 150-152 (1984).
    [CrossRef] [PubMed]
  15. G. P. Agrawal, Nonlinear fiber optics, (Academic press, Inc. 1994).
  16. J.W. Nicholson, J. Jasapara, W. Rudolph, F.G. Omenetto, A.J. Taylor, �??Full-f ield characterization of femtosecond pulses by spectrum and cross-correlation measurements,�?? Opt. Lett. 1774-76 (1999) and 138 (2000).
    [CrossRef]
  17. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  18. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, and R. Trebino, S. Coen, R. S. Windeler, �??Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,�?? Opt. Express 10, 1215-1221 (2002).
    [CrossRef] [PubMed]
  19. K.M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen and K. P. Hansen �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,�?? Opt. Express 12, 1045-55 (2004).
    [CrossRef] [PubMed]
  20. A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  21. J. Dudley, S. Coen , �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-82 (2002).
    [CrossRef]
  22. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, R. S. Windeler, �??Experimental studies of the coherence of microstructure-fiber supercontinuum,�?? Opt. Express 11, 2997-2703 (2003).
    [CrossRef]
  23. W. J. Tomlinson, R. H. Stolen, C. V. Shank, �??Compression of optical pulses chirped by self-phase modulation in fibers,�?? J. Opt. Soc. Am. B 1 139-149 (1984).
    [CrossRef]

Ann. Chim. ??? Sci. Mat.

F. Druon, F. Balembois, P. Georges, �??Laser crystals for the production of ultra-short laser pulses,�?? Ann. Chim. �?? Sci. Mat. (Ed. Elsevier SAS) 28, 47-72 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys B

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, U. Keller, �??Ultrafast ytterbium-doped bulk laser amplifiers,�?? Appl. Phys B 69, 3-17 (1999).
[CrossRef]

Appl. Phys. B

M.E. Fermann, A. Galvanauskas, G. Sucha, D. Harter, �??Ultrafast pulse sources based on multi-mode optical fibers,�?? Appl. Phys. B 65, 259-275 (1997).
[CrossRef]

G. McConnell, E. Riis, �??Ultrashort pulse compression using photonic crystal fiber,�?? Appl. Phys. B 557-563 (2004)
[CrossRef]

Electon. Lett.

C. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevstev, T.A. Birks, J.C. Knight, P.St.J. Russel, �??Experimental measurement of group velocity dispersion in photonic crystal fiber,�?? Electon. Lett. 35, 63-64 (1999).
[CrossRef]

Electron. Lett.

B.R. Washburn, S.E. Ralph, P.A. Lacourt, J.M. Dudley, W.T. Rhodes, R.S. Windeler, S. Coen, �??Tunable near-infrared femtosecond soliton generation in photonic crystal fibres,�?? Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

I.G. Cormack, D.T. Reid, W.J. Wadsworth, J.C. Knight, P.ST.J. Russel, �??Observation of soliton self-frequency shift in photonic crystal fibre,�?? Electron. Lett. 38, 167-168 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. V. Husakou and J. Herrmann, �??Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other

<a href="http://www.crystal-fibre.com/">http://www.crystal-fibre.com/</a>

G. P. Agrawal, Nonlinear fiber optics, (Academic press, Inc. 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Evolution of spectra versus the coupled power in the fiber (in log scale).

Fig. 3.
Fig. 3.

Experimental and theoretical spectra (due to SPM, SS and TOD) for a coupled average power about 45 mW (Φ SPM ≈2π).

Fig. 4.
Fig. 4.

Theoretical, retrieved and experimental non-collinear autocorrelation traces.

Fig. 5.
Fig. 5.

Theoretical and experimental retrieved pulse shape and phase.

Fig. 6.
Fig. 6.

Example of interferometric autocorrelations for Φ SPM ≈2π. The fitting assuming a pulse shape given by the model allows a fairly accurate estimation of the pulse duration.

Fig. 7.
Fig. 7.

Pulse duration of compressed pulses after the prism-compressor and influence of the pre-pulse amplitude.

Fig. 8.
Fig. 8.

Experimental and theoretical spectra for Φ SPM ≈2.5π(≈57 mW) just below the SRS splitting.

Fig. 9.
Fig. 9.

XFROG traces for different non-linear phase shifts: the first column represents XFROG[Efiber,Einput] which puts the emphasis on the spectrum generation by SPM in the PCF fiber; the second column represents XFROG[Ecompressed,ETF] which puts the emphasis on the compression efficiency and the third column represents XFROG[Ecompressed,ETF]-XFROG[ETF,ETF] which puts the emphasis on the compressed-pulse quality.

Fig. 10.
Fig. 10.

Evolution of spectra versus the coupled power in the fiber (in log scale): evidence of the stimulated Raman scattering splitting and soliton self-frequency shift.

Fig. 11.
Fig. 11.

Pulse duration of compressed pulses after the prism-compressor and influence of the SRS splitting see also Fig.10.

Fig. 12.
Fig. 12.

Autocorrelation trace for Φ SPM ≈4π. The experimental trace shows 7 cycles at FWHM and the theory 3 cycles both are demonstrating important satellite pulses.

Fig. 13.
Fig. 13.

XFROG traces for incident pulse duration: the first column represents XFROG[Efiber,Einput] which puts the emphasis on the spectrum generation by SPM in the PCF fiber; the second column represents XFROG[Ecompressed,ETF] which puts the emphasis on the compression efficiency and the third column represents XFROG[Ecompressed,ETF]-XFROG[ETF,ETF] which puts the emphasis on the compressed-pulse quality.

Fig. 14.
Fig. 14.

Second pulse amplitude versus incident pulse duration for fixed compressed pulse durations Δτf ∈[15fs,20fs,30fs].

Fig. 15.
Fig. 15.

Time-bandwidth product at FWHM versus incident pulse duration for fixed compressed pulse durations Δτf ∈[15fs,20fs,30fs].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Φ SPM = γ P 0 L
Δ ( f ( x ) , g ( x ) ) = 1 N i = 1 N ( f ( x i ) g ( x i ) ) 2
XFROG [ E 1 , E 2 ] ( λ , τ ) = E 1 ( t ) E 2 ( τ t ) e i 2 π ct λ dt 2
Φ SPM ( Δ τ i ) = γ L P ¯ F . Δ τ i a Δ τ f Δ τ i a

Metrics