Abstract

We present a source of correlated photon pairs that relies on spontaneous parametric scattering in microstructure fiber. Quantum correlations are shown between photon pairs that are generated through four-photon scattering where the pump photons are degenerate at a wavelength of 749 nm and the signal and idler photons are nondegenerate at wavelengths of 761 nm and 737 nm, respectively. Careful adjustment of the pump wavelength and polarization are shown to be critical to observing quantum correlations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of quantum information (Springer-Verlag, Berlin, 2000).
  2. D. C. Burnham and D. L. Weinberg, ???Observation of simultaneity in parametric production of optical photon pairs,??? Phys. Rev. Lett. 25, 84???87 (1970).
    [CrossRef]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, ???New high-intensity source of polarization-entangled photon pairs,??? Phys. Rev. Lett. 75, 4337???4341 (1995).
    [CrossRef] [PubMed]
  4. J. E. Sharping, M. Fiorentino, and P. Kumar, ???Observation of twin-beam-type quantum correlation in optical fiber,??? Opt. Lett. 26, 367???369 (2001).
    [CrossRef]
  5. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, ???All-fiber photon-pair source for quantum communications,??? IEEE Photon. Technol. Lett. 14, 983???985 (2002).
    [CrossRef]
  6. X. Li, P. Voss, J. E. Sharping, and P. Kumar, ???Violation of Bell???s inequality near 1550 nm using an all-fiber source of polarization-entangled photon pairs,??? in Proceedings of the 2003 Quantum Electronics and Laser Science Conference (QELS???2003) (Optical Society of America, Washington, D.C., 2003), QTuB4.
  7. X. Li, P. Voss, J. E. Sharping, and P. Kumar, ???Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,??? Quantum Physics Archive, 0402191 (2004) <a href="http://xxx.lanl.gov/abs/quant-ph/0402191">http://xxx.lanl.gov/abs/quant-ph/0402191</a>.
  8. P. Russell, ???Photonic crystal fibers,??? Science 299, 358???362 (2003).
    [CrossRef] [PubMed]
  9. M. Fiorentino, J. E. Sharping, P. Kumar, A. Porzio, and R. S. Windeler, ???Soliton squeezing in microstructure fiber,??? Opt. Lett. 27, 649???651 (2002).
    [CrossRef]
  10. A. Dogariu, J. Fan, and L. J. Wang, ???Correlated photon generation for quantum cryptography,??? NEC Res. and Develop., 44, 294???296 (2003).
  11. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar and R. S. Windeler, ???Four-wave mixing in microstructure fiber,??? Opt. Lett. 26, 1048???1050 (2001).
    [CrossRef]
  12. J.E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, ???Optical-parametric oscillator based on four-wave mixing in microstructure fiber,??? Opt. Lett. 19, 1675-1677 (2002).
    [CrossRef]
  13. S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, ???Long distance unconditional teleportation of atomic states via complete Bell state measurements,??? Phys. Rev. Lett. 87, 167903 (2001).
    [CrossRef] [PubMed]
  14. D. B. Mortimore, ???Fiber loop reflectors,??? J. Lightwave Tech. 6, 1217???1224 (1988).
    [CrossRef]
  15. R. H. Stolen and G. D. Bjorkholm, ???Parametric amplification and frequency conversion in optical fibers,??? IEEE J. Quantum Electron. 18, 1062???1072 (1982).
    [CrossRef]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, third edition, San Diego, Calif., 2000).
  17. D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, ???Dispersion measurements of microstructured fibers using femtosecond laser pulses,??? Opt. Commun. 192, 219???223 (2001).
    [CrossRef]
  18. P. L. Voss and P. Kumar, ???Raman-noise-induced noise-figure limit for chi (3) parametric amplifiers,??? Opt. Lett. 29, 445???447 (2004).
    [CrossRef] [PubMed]
  19. P. L. Voss and P. Kumar, ???Raman-effect induced noise limits on X(3) parametric amplifiers and wavelength converters,??? J. of Opt. B. 6, (2004).
  20. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, ???Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,??? Opt. Lett. 28, 2225???2227 (2003).
    [CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. H. Stolen and G. D. Bjorkholm, ???Parametric amplification and frequency conversion in optical fibers,??? IEEE J. Quantum Electron. 18, 1062???1072 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, ???All-fiber photon-pair source for quantum communications,??? IEEE Photon. Technol. Lett. 14, 983???985 (2002).
[CrossRef]

J. Lightwave Tech. (1)

D. B. Mortimore, ???Fiber loop reflectors,??? J. Lightwave Tech. 6, 1217???1224 (1988).
[CrossRef]

J. of Opt. B (1)

P. L. Voss and P. Kumar, ???Raman-effect induced noise limits on X(3) parametric amplifiers and wavelength converters,??? J. of Opt. B. 6, (2004).

NEC Res. and Develop. (1)

A. Dogariu, J. Fan, and L. J. Wang, ???Correlated photon generation for quantum cryptography,??? NEC Res. and Develop., 44, 294???296 (2003).

Opt. Commun. (1)

D. Ouzounov, D. Homoelle, W. Zipfel, W. W. Webb, A. L. Gaeta, J. A. West, J. C. Fajardo, and K. W. Koch, ???Dispersion measurements of microstructured fibers using femtosecond laser pulses,??? Opt. Commun. 192, 219???223 (2001).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. Lett. (3)

D. C. Burnham and D. L. Weinberg, ???Observation of simultaneity in parametric production of optical photon pairs,??? Phys. Rev. Lett. 25, 84???87 (1970).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, ???New high-intensity source of polarization-entangled photon pairs,??? Phys. Rev. Lett. 75, 4337???4341 (1995).
[CrossRef] [PubMed]

S. Lloyd, M. S. Shahriar, J. H. Shapiro, and P. R. Hemmer, ???Long distance unconditional teleportation of atomic states via complete Bell state measurements,??? Phys. Rev. Lett. 87, 167903 (2001).
[CrossRef] [PubMed]

Proceedings of 2003 QELS Conference (1)

X. Li, P. Voss, J. E. Sharping, and P. Kumar, ???Violation of Bell???s inequality near 1550 nm using an all-fiber source of polarization-entangled photon pairs,??? in Proceedings of the 2003 Quantum Electronics and Laser Science Conference (QELS???2003) (Optical Society of America, Washington, D.C., 2003), QTuB4.

Quantum Physics Archive (1)

X. Li, P. Voss, J. E. Sharping, and P. Kumar, ???Optical-fiber source of polarization-entangled photon pairs in the 1550 nm telecom band,??? Quantum Physics Archive, 0402191 (2004) <a href="http://xxx.lanl.gov/abs/quant-ph/0402191">http://xxx.lanl.gov/abs/quant-ph/0402191</a>.

Science (1)

P. Russell, ???Photonic crystal fibers,??? Science 299, 358???362 (2003).
[CrossRef] [PubMed]

Other (2)

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of quantum information (Springer-Verlag, Berlin, 2000).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, third edition, San Diego, Calif., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental measurements of group delay as a function of wavelength for the MF used in our experiments. Second-order polynomial fits accompany the data. The two curves are for the two polarization modes of the MF, clearly showing that there are differences in the GVD behavior for the two modes. Inset shows plots of D vs. wavelength for the same MF and the λ 0 values are indicated for each polarization mode.

Fig. 2.
Fig. 2.

A schematic of the experiment used to generate and detect quantum correlated twin photons generated in MF.

Fig. 3.
Fig. 3.

Graphs showing the spectral response of the detection filter in comparison with the bandwidth of the injected pump. Note that the passband centers of the detection filter for the signal and idler are located symmetrically with respect to the pump’s center wavelength, and that the detection bandwidth (2.1 nm FWHM) is considerably larger than the pump bandwidth (0.3 nm FWHM).

Fig. 4.
Fig. 4.

Graphs showing the idler count rate for FPS with different pump wavelengths and a given detection filter setting. Data points are accompanied by theoretical scattering curves, which were fitted to the data using Eqs. (1–3). The λ 0 is assumed to be 748 nm for these calculations. One sees that the optimum response is achieved for a pump wavelength of 749 nm. The dashed curve in the inset shows the measured filter response for the idler passband in comparison with the theoretical variation of FPS efficiency versus wavelength.

Fig. 5.
Fig. 5.

Histogram data gathered using the multichannel scaler where one counter is used to trigger the acquisition and the other is taken to be the signal. One bin, the coincident bin, has many more counts than the others indicating that the coincident events are registered at the PCMs with a higher probability than non-coincident events. The variation in the counts in the non-coincident bins is due to asynchronous photon detection relative to the arrival of pump pulses.

Fig. 6.
Fig. 6.

Plots of total coincidence counts (triangles) and accidental coincidence counts (boxes) as a function of the number of pump photons per pulse with the photon counters aligned to detect at 737 nm and 761 nm wavelengths, respectively. At low pump powers there is a quadratic dependence of the counts on pump power, but as the power is increased the increasing signal and idler count rates start saturating the photon counters. The inset shows true coincidences (the difference between the total coincidence counts and the accidental coincidence counts) as a function of the number of pump photons per pulse.

Tables (1)

Tables Icon

Table 1. Various properties of the OFS MF used in these experiments.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A 1 z = α 2 A 1 + i γ ( A 1 2 A 1 ) ,
A 2 z = α 2 A 2 + i γ [ ( 2 A 1 2 ) A 2 + A 1 2 A 3 * e i Δ k z ] ,
A 3 z = α 2 A 3 + i γ [ ( 2 A 1 2 ) A 3 + A 1 2 A 2 * e i Δ k z ] ,
κ = 2 γ P 1 + Δ k 2 γ P 1 + β ( ω 2 ω 1 ) 2 = 0 ,
Delay = a λ 2 + b λ + c ,
R = a 1 [ ( G G 0 ) + b 1 ( P pump ) ] ,

Metrics