Abstract

Optical fiber tapers with a waist size larger than 1μm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55μm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
    [Crossref]
  2. L.C. Bobb and P.M. Shankar, “Tapered Optical Fiber Components and Sensors,” Microwave J., 218–228 (May 1992).
  3. H. Murata, Handbook of Optical Fibers and Cables 2nd ed. (Marcel Dekker, New York, 1996).
  4. D. K. Mynbaev and L.L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, New York, (2001).
  5. T.A. Birks, W.J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
    [Crossref]
  6. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
    [Crossref] [PubMed]
  7. Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
    [Crossref]
  8. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
    [Crossref] [PubMed]
  9. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
    [Crossref]
  10. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
    [Crossref]
  11. F. Bilodeau, K. 0. Hill, D. C. Johnson, and S. Faucher, “Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,” Opt. Lett. 12, 634–636 (1987).
    [Crossref] [PubMed]
  12. D. Marcuse and R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).
  13. F. Ladouceur, “Roughness, Inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
    [Crossref]
  14. T.A. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [Crossref]
  15. J.M. Senior, Optical fiber communications, Principles and Practice (Prentice Hall Europe, 1992)
  16. S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
    [Crossref] [PubMed]
  17. J.D. Love, “Spot size, adiabaticity and diffraction in tapered fibers,” Electron. Lett. 23, 993–994 (1987).
    [Crossref]
  18. A.W. Snyder and J.D. Love, Optical waveguide theory (Kluwer Academic Publishers, Norwell, 2000).
  19. K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).

2003 (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

2002 (2)

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[Crossref] [PubMed]

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

2000 (2)

T.A. Birks, W.J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
[Crossref]

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[Crossref]

1999 (1)

1997 (1)

F. Ladouceur, “Roughness, Inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

1992 (2)

T.A. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

L.C. Bobb and P.M. Shankar, “Tapered Optical Fiber Components and Sensors,” Microwave J., 218–228 (May 1992).

1987 (2)

1986 (1)

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
[Crossref] [PubMed]

1969 (1)

D. Marcuse and R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Bilodeau, F.

Birks, T.A.

Bobb, L.C.

L.C. Bobb and P.M. Shankar, “Tapered Optical Fiber Components and Sensors,” Microwave J., 218–228 (May 1992).

Bourbommais, R.

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
[Crossref] [PubMed]

Bures, J.

J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A 16, 1992–1996 (1999).
[Crossref]

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
[Crossref] [PubMed]

Chigusa, Y.

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

Dai, Z. R.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[Crossref] [PubMed]

Derosier, R. M.

D. Marcuse and R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).

Faucher, S.

Gao, R. P. P.

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Ghosh, R.

Gole, J. L.

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[Crossref]

Gonthier, F.

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
[Crossref] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Hill, K. 0.

Hu, J. Q.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

Jiang, Y.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

Johnson, D. C.

Kakui, K.

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

Lacroix, S.

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
[Crossref] [PubMed]

Ladouceur, F.

F. Ladouceur, “Roughness, Inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

Lee, C. S.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

Lee, S.T.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

Li, Y.W.

T.A. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Love, J.D.

J.D. Love, “Spot size, adiabaticity and diffraction in tapered fibers,” Electron. Lett. 23, 993–994 (1987).
[Crossref]

A.W. Snyder and J.D. Love, Optical waveguide theory (Kluwer Academic Publishers, Norwell, 2000).

Ma, C.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[Crossref] [PubMed]

Marcuse, D.

D. Marcuse and R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).

Matsui, M.

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Meng, X. M.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

Mynbaev, D. K.

D. K. Mynbaev and L.L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, New York, (2001).

Nagayama, K.

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).

Pan, Z. W.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[Crossref] [PubMed]

Russell, P. St. J.

Saitoh, T.

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

Scheiner, L.L.

D. K. Mynbaev and L.L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, New York, (2001).

Senior, J.M.

J.M. Senior, Optical fiber communications, Principles and Practice (Prentice Hall Europe, 1992)

Shankar, P.M.

L.C. Bobb and P.M. Shankar, “Tapered Optical Fiber Components and Sensors,” Microwave J., 218–228 (May 1992).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Snyder, A.W.

A.W. Snyder and J.D. Love, Optical waveguide theory (Kluwer Academic Publishers, Norwell, 2000).

Stout, J. D.

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[Crossref]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Wadsworth, W.J.

Wang, Z. L.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[Crossref] [PubMed]

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[Crossref]

Adv. Mater. (2)

Z. L. Wang, R. P. P. Gao, J. L. Gole, and J. D. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12, 1938–1940 (2000).
[Crossref]

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S.T. Lee, “Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers,” Adv. Mater. 15, 70–73 (2003).
[Crossref]

Applied Optics (1)

S. Lacroix, R. Bourbommais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Applied Optics 25, 4421–4425 (1986).
[Crossref] [PubMed]

Bell Syst. Tech. J. (1)

D. Marcuse and R. M. Derosier, “Mode conversion caused by diameter changes of a round dielectric waveguide,” Bell Syst. Tech. J. 48, 3217–3232 (1969).

Electron Lett. (1)

K. Nagayama, K. Kakui, M. Matsui, T. Saitoh, and Y. Chigusa, “Ultra-low-loss (0.1484 dB/km) pure silica core fiber and extension of transmission distance,” Electron Lett. 38, 1168–1169 (2002).
[Crossref]

Electron. Lett. (1)

J.D. Love, “Spot size, adiabaticity and diffraction in tapered fibers,” Electron. Lett. 23, 993–994 (1987).
[Crossref]

J. Am. Chem. Soc. (1)

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817–1822 (2002).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

F. Ladouceur, “Roughness, Inhomogeneity, and integrated optics,” J. Lightwave Technol. 15, 1020–1025 (1997).
[Crossref]

T.A. Birks and Y.W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

Microwave J. (1)

L.C. Bobb and P.M. Shankar, “Tapered Optical Fiber Components and Sensors,” Microwave J., 218–228 (May 1992).

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–818 (2003).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (5)

H. Murata, Handbook of Optical Fibers and Cables 2nd ed. (Marcel Dekker, New York, 1996).

D. K. Mynbaev and L.L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, New York, (2001).

J.M. Senior, Optical fiber communications, Principles and Practice (Prentice Hall Europe, 1992)

A.W. Snyder and J.D. Love, Optical waveguide theory (Kluwer Academic Publishers, Norwell, 2000).

K. Okamoto, Fundamentals of optical waveguides (Academic Press, San Diego, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison between specific losses of the tapers fabricated in this paper and the data reported in literature [6]. Dynamic and static losses refer to measurements performed during the nanotaper fabrication and after it, respectively.

Fig. 2.
Fig. 2.

Intensity distribution of the propagating mode for three different nanotaper sizes. Inset: Simulations showing the distance from the nanotaper at which the intensity decreases 10dB.

Fig. 3.
Fig. 3.

SEM picture of a nanotaper with 160nm radius.

Tables (1)

Tables Icon

Table 1. Static loss measurement of nanotapers with r=375nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V = 2 · π · r · NA λ .

Metrics