Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-dimensional poling patterns for 3rd and 4th harmonic generation

Open Access Open Access

Abstract

We find globally optimal poling patterns for 2-dimensional χ(2) photonic crystals for 3rd and 4th harmonic generation.

©2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Optimal poling of nonlinear photonic crystals for frequency conversion

Andrew H. Norton and C. Martijn de Sterke
Opt. Lett. 28(3) 188-190 (2003)

The Dynamical Lorentz Shift in an extended optically dense superradiant amplifier

Jamal T. Manassah and Barry Gross
Opt. Express 1(6) 141-151 (1997)

Aperiodic 1-dimensional structures for quasi-phase matching

Andrew H. Norton and C. Martijn de Sterke
Opt. Express 12(5) 841-846 (2004)

Supplementary Material (5)

Media 1: MPEG (2381 KB)     
Media 2: MPEG (1900 KB)     
Media 3: MPEG (1940 KB)     
Media 4: MPEG (1747 KB)     
Media 5: MPEG (1795 KB)     

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Generic QPM schemes for (a) THG, (b) FHG. Reciprocal lattice vectors G 1 and G 2 phase match quadratic interactions between jth harmonic wave vectors k j .
Fig. 2.
Fig. 2. (a) Each point on the curve Σ corresponds to a Σ-pattern. (b) (2.4MB) Video of the Σ-patterns defined by Eq. (14) for varying angle ψ.
Fig. 3.
Fig. 3. (1.9MB) Energy fluxes for standard THG solutions plotted against distance into the photonic crystal. The video shows how the energy fluxes change as the poling parameter ψ is varied. The red, green and blue curves are Uq (x), q=1, 2, 3 (1st, 2nd and 3rd harmonics) respectively. For the critical value ψcrit ≈ 41.42°, 100% conversion is attained at x=∞. (a) ψ=41.41°. (b) ψ=41.43°.
Fig. 4.
Fig. 4. (1.9MB) THG amplitudes near ψcrit≈41.42°. The red, green and blue curves are Re{A 1}, Im{A 2} and Re{A 3} respectively (the other components are zero for standard THG solutions). (a) ψ=41.41°. (b) ψ=41.43°.
Fig. 5.
Fig. 5. (a) (1.8MB) FHG energy fluxes Uq, q=1, 2, 4. (b) (1.8MB) FHG amplitudes Re{A 1}, Im{A 2}, and Im{A 4}. Red, green and blue curves are for 1st, 2nd and 4th harmonics respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E q ( t , x ) = A q ( x ) e i ( k q · x q ω t ) + A q * ( x ) e i ( k q · x q ω t ) .
k q = k m + k n + G ,
p ( x ) = a = b = p a b e i x · G a b = ± 1 .
d A 1 d x = i ω χ c n 1 ( σ 1 * A 2 A 1 * + σ 2 * A 3 A 2 * ) ,
d A 2 d x = i ω χ c n 2 cos θ 2 ( σ 1 A 1 2 + 2 σ 2 * A 1 * A 3 ) ,
d A 3 d x = 3 i ω χ c n 3 cos θ 3 σ 2 A 1 A 2 .
( σ 1 , σ 2 ) = σ ( ϕ ) ( cos ϕ , sin ϕ ) ,
{ A 1 , A 2 , A 3 } { A 1 e i β , A 2 e i 2 β , A 3 e i 3 β } ,
{ A 1 , A 2 , A 3 , x } { μ A 1 , μ A 2 , μ A 3 , x μ } ,
{ σ 1 , σ 2 , A 2 , A 3 } { σ 1 e 1 α 1 , σ 2 e i α 2 , A 2 e i α 1 , A 3 e i ( α 1 + α 2 ) } ,
{ σ 1 , σ 2 , x } { μ σ 1 , μ σ 2 , x μ } .
σ 1 σ 1 exp ( i x 0 · G a 1 b 1 ) , σ 2 σ 2 exp ( i x 0 · G a 2 b 2 ) .
p ( x ) = sign ( n · δ x ) .
p ( x ) = sign ( cos ψ cos ( x · G a 1 b 1 ) + sin ψ cos ( x · G a 2 b 2 ) ) .
A 1 x = i ω χ c n 1 σ 1 * A 2 A 1 * ,
A 2 x = i ω χ c n 2 cos θ 2 ( σ 1 A 1 2 + 2 σ 2 * A 4 A 2 * ) ,
A 4 x = 2 i ω χ c n 4 cos θ 4 σ 2 A 2 2 .
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.