P.T. Brown, S. Mailis, I. Zergioti, and R.W. Eason, “Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,” Opt. Mat. 20, 125–134 (2002).
[Crossref]
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
M.J. Missey, S. Russell, V. Dominic, R.G. Batchko, and K.L. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate,” Opt. Express 6, 186–195 (2000). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186
[Crossref]
[PubMed]
R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[Crossref]
R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[Crossref]
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
M. Reich, F. Korte, C. Gallnich, H. Welling, and A. Tünnermann, “Electrode geometries for periodic poling of ferroelectric materials,” Opt. Lett. 23, 1817–1819 (1998).
[Crossref]
G.D. Miller, R.G. Batchko, M.M. Fejer, and R.L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE 2700, 34–36 (1996).
[Crossref]
L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[Crossref]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
J.P. Spallas, A.M. Hawryluk, and D.R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[Crossref]
M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
W.K. Burns, W. McElhanon, and L. Goldberg, “Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
M. Yamada and K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[Crossref]
P.T. Brown, G.W. Ross, R.W. Eason, and A.R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commun. 163, 310–316 (1990).
[Crossref]
E.J. Lim, M.M. Fejer, and R.L. Byer, “Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]
J. Webjörn, F. Laurell, and G. Arvidsson, “Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,” IEEE J. Lightwave Technol. 7, 1597–1600 (1989).
[Crossref]
E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[Crossref]
A.C. Busacca, V. Apostolopoulos, R.W. Eason, and S. Mailis, “Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,” Proc. in CLEO/QELS 2002, Long Beach CA, USA, pp. 642–643.
J. Webjörn, F. Laurell, and G. Arvidsson, “Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,” IEEE J. Lightwave Technol. 7, 1597–1600 (1989).
[Crossref]
M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[Crossref]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
I.E. Barry, “Microstructuring of lithium niobate,” PhD research thesis, Optoelectronics Research Centre, Faculty of Science, University of Southampton (2000).
M.J. Missey, S. Russell, V. Dominic, R.G. Batchko, and K.L. Schepler, “Real-time visualization of domain formation in periodically poled lithium niobate,” Opt. Express 6, 186–195 (2000). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-10-186
[Crossref]
[PubMed]
R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[Crossref]
R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[Crossref]
G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, and R.L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]
G.D. Miller, R.G. Batchko, M.M. Fejer, and R.L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE 2700, 34–36 (1996).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
P.T. Brown, S. Mailis, I. Zergioti, and R.W. Eason, “Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,” Opt. Mat. 20, 125–134 (2002).
[Crossref]
P.T. Brown, G.W. Ross, R.W. Eason, and A.R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commun. 163, 310–316 (1990).
[Crossref]
W.K. Burns, W. McElhanon, and L. Goldberg, “Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]
A.C. Busacca, V. Apostolopoulos, R.W. Eason, and S. Mailis, “Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,” Proc. in CLEO/QELS 2002, Long Beach CA, USA, pp. 642–643.
R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[Crossref]
R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[Crossref]
G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, and R.L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]
G.D. Miller, R.G. Batchko, M.M. Fejer, and R.L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE 2700, 34–36 (1996).
[Crossref]
L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[Crossref]
E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[Crossref]
E.J. Lim, M.M. Fejer, and R.L. Byer, “Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
P.T. Brown, S. Mailis, I. Zergioti, and R.W. Eason, “Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,” Opt. Mat. 20, 125–134 (2002).
[Crossref]
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
P.T. Brown, G.W. Ross, R.W. Eason, and A.R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commun. 163, 310–316 (1990).
[Crossref]
A.C. Busacca, V. Apostolopoulos, R.W. Eason, and S. Mailis, “Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,” Proc. in CLEO/QELS 2002, Long Beach CA, USA, pp. 642–643.
R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[Crossref]
R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[Crossref]
G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, and R.L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]
G.D. Miller, R.G. Batchko, M.M. Fejer, and R.L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE 2700, 34–36 (1996).
[Crossref]
L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, and J.W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[Crossref]
E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[Crossref]
E.J. Lim, M.M. Fejer, and R.L. Byer, “Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[Crossref]
W.K. Burns, W. McElhanon, and L. Goldberg, “Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
J.P. Spallas, A.M. Hawryluk, and D.R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[Crossref]
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
J.P. Spallas, A.M. Hawryluk, and D.R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
M. Yamada and K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[Crossref]
E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
J. Webjörn, F. Laurell, and G. Arvidsson, “Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,” IEEE J. Lightwave Technol. 7, 1597–1600 (1989).
[Crossref]
E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[Crossref]
E.J. Lim, M.M. Fejer, and R.L. Byer, “Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]
P.T. Brown, S. Mailis, I. Zergioti, and R.W. Eason, “Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,” Opt. Mat. 20, 125–134 (2002).
[Crossref]
A.C. Busacca, V. Apostolopoulos, R.W. Eason, and S. Mailis, “Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,” Proc. in CLEO/QELS 2002, Long Beach CA, USA, pp. 642–643.
W.K. Burns, W. McElhanon, and L. Goldberg, “Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]
G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, and R.L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]
G.D. Miller, R.G. Batchko, M.M. Fejer, and R.L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE 2700, 34–36 (1996).
[Crossref]
G.D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” PhD dissertation, Department of Electrical Engineering, Stanford University (1998).
J.A. Mitchell, “Fabrication and characterization of quasi-phase-matched nonlinear optical devices,” degree thesis, The Pennsylvania State University (1996).
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
P.T. Brown, G.W. Ross, R.W. Eason, and A.R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commun. 163, 310–316 (1990).
[Crossref]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
P.T. Brown, G.W. Ross, R.W. Eason, and A.R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commun. 163, 310–316 (1990).
[Crossref]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[Crossref]
R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[Crossref]
R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[Crossref]
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
J.P. Spallas, A.M. Hawryluk, and D.R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
J. Webjörn, F. Laurell, and G. Arvidsson, “Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,” IEEE J. Lightwave Technol. 7, 1597–1600 (1989).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
M. Yamada and K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[Crossref]
P.T. Brown, S. Mailis, I. Zergioti, and R.W. Eason, “Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,” Opt. Mat. 20, 125–134 (2002).
[Crossref]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[Crossref]
R.G. Batchko, V.Y. Shur, M.M. Fejer, and R.L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[Crossref]
J. Webjörn, V. Pruneri, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Quasi-phase-matched blue light generation in bulk lithium niobate, electrically poled via periodic liquid electrodes,” Electron. Lett. 30, 894–895 (1994).
[Crossref]
E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[Crossref]
E.J. Lim, M.M. Fejer, and R.L. Byer, “Second-harmonic generation of green light in periodically poled planar Lithium Niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]
M. Yamada and K. Kishima, “Fabrication of periodically reversed domain structure for SHG in LiNbO3 by direct electron beam lithography at room temperature,” Electron. Lett. 27, 828–829 (1991).
[Crossref]
D.H. Naghski, J.T. Boyd, H.E. Jackson, S. Sriram, S.A. Kingsley, and J. Latess, “An Integrated Photonic Mach-Zehnder Interferometer with No Electrodes for Sensing Electric Fields,” IEEE J. Lightwave Technol. 12, 1092–1098 (1994).
[Crossref]
J. Webjörn, F. Laurell, and G. Arvidsson, “Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation,” IEEE J. Lightwave Technol. 7, 1597–1600 (1989).
[Crossref]
W.K. Burns, W. McElhanon, and L. Goldberg, “Second Harmonic Generation in Field Poled, Quasi-Phase-Matched, Bulk LiNbO3,” IEEE Photon. Technol. Lett. 6, 252–254 (1994).
[Crossref]
J.P. Spallas, A.M. Hawryluk, and D.R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[Crossref]
M.L. Schattenburg, R.J. Aucoin, and R.C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B 13, 3007–3011 (1995).
[Crossref]
I.E Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Materials Lett. 37, 246–254 (1998).
[Crossref]
V. Pruneri, J. Webjörn, P.St.J. Russell, J.R.M. Barr, and D.C. Hanna, “Intracavity second harmonic generation of 0.532µm in bulk periodically poled lithium niobate,” Opt. Comm. 116, 159–162 (1995).
[Crossref]
P.T. Brown, G.W. Ross, R.W. Eason, and A.R. Pogosyan, “Control of domain structures in lithium tantalate using interferometric optical patterning,” Opt. Commun. 163, 310–316 (1990).
[Crossref]
M. Reich, F. Korte, C. Gallnich, H. Welling, and A. Tünnermann, “Electrode geometries for periodic poling of ferroelectric materials,” Opt. Lett. 23, 1817–1819 (1998).
[Crossref]
G.D. Miller, R.G. Batchko, W.M. Tulloch, D.R. Weise, M.M. Fejer, and R.L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[Crossref]
R.G. Batchko, M.M. Fejer, R.L. Byer, D. Woll, R. Wallenstein, V.Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[Crossref]
P.T. Brown, S. Mailis, I. Zergioti, and R.W. Eason, “Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics,” Opt. Mat. 20, 125–134 (2002).
[Crossref]
N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, and D.C. Hanna, “Hexagonally Poled Lithium Niobate: A Two-Dimensional Nonlinear Photonic Crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[Crossref]
[PubMed]
G.D. Miller, R.G. Batchko, M.M. Fejer, and R.L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” SPIE 2700, 34–36 (1996).
[Crossref]
I.E. Barry, “Microstructuring of lithium niobate,” PhD research thesis, Optoelectronics Research Centre, Faculty of Science, University of Southampton (2000).
A.C. Busacca, V. Apostolopoulos, R.W. Eason, and S. Mailis, “Surface Engineered Ferroelectric Domains in Congruent Lithium Niobate Crystals,” Proc. in CLEO/QELS 2002, Long Beach CA, USA, pp. 642–643.
G.D. Miller, “Periodically poled lithium niobate: modelling, fabrication, and nonlinear-optical performance,” PhD dissertation, Department of Electrical Engineering, Stanford University (1998).
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, G. Pierattini, and M. Chiarini, “Investigation on poling of Lithium Niobate patterned by interference lithography”, to be published on Proc. SPIE 4944, Photonics Fabrication Europe2002.
J.A. Mitchell, “Fabrication and characterization of quasi-phase-matched nonlinear optical devices,” degree thesis, The Pennsylvania State University (1996).
S. Grilli, S. De Nicola, P. Ferraro, A. Finizio, P. De Natale, M. Iodice, and G. Pierattini, “Investigation on overpoled Lithium Niobate patterned crystal,” ICO XIX, 19th Congress of the International Commission for Optics, Firenze, Italy25–31 August 2002, Technical Digest, Part 2, 735–736.